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Simple Stresses and Strains

Expressions for stresses and strains is derived with the following assumptions:

1. For the range of forces applied the material is elastic i.e. it can regain its original shape and
size, if the applied force is removed.
2. Material is homogeneous i.e. every particle of the material possesses identical mechanical
properties.
3. Material is isotropic i.e. the material possesses identical mechanical property at any point in
any direction.
Presenting the typical stress-strain curve for a typical steel, the commonly referred terms like
limits of elasticity and proportionality, yield points, ultimate strength and strain hardening are explained.
Linear elastic theory is developed to analyse different types of members subject to axial, shear,
thermal and hoop stresses.

MEANING OF STRESS

When a member is subjected to loads it develops resisting forces. To find the resisting forces
developed a section plane may be passed through the member and equilibrium of any one part may
be considered. Each part is in equilibrium under the action of applied forces and internal resisting
forces. The resisting forces may be conveniently split into normal and parallel to the section plane.
The resisting force parallel to the plane is called shearing resistance. The intensity of resisting force
normal to the sectional plane is called intensity of Normal Stress (Ref. Fig.).

Resisting Force
Normal to Plane

A A p
\/\/’ Shearing _|%
Pl Force T i q
Section
/ O \( Plane
< E/\
(a) Members (b) Internal Resistances (c)
Subject to Forces Developed

Fig.

In practice, intensity of stress is called as ‘‘stress’” only. Mathematically

Normal Stress = p = lim —

_ dr (1)

where R is normal resisting force.
The intensity of resisting force parallel to the sectional plane is called Shearing Stress (q).

Shearing Stress = g = A}L‘iI_I)IO A—AQ = Z—g .(2)
A
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where Q is Shearing Resistance.

Thus, stress at any point may be defined as resistance developed per unit area. From equations
(1) and (2), it follows that

dR = pdA
or R = [ pdA ..(3a)
ond 0= qdn ...(3b)

At any cross-section, stress developed may or may not be uniform. In a bar of uniform cross-
section subject to axial concentrated loads as shown in Fig. 2a, the stress is uniform at a section
away from the applied loads (Fig. 2b); but there is variation of stress at the section near the applied
loads (Fig. 2c¢).

P+ — P

« PA

—
e

(b) Variation of Stresses Away from Ends

]

(c) Variation of Stresses Near Ends
Fig. 2

Similarly stress near the hole or at fillets will not be uniform as shown in Figs. 3 and 4. It is
very common that at some points in such regions maximum stress will be as high as 2 to 4 times
the average stresses.

—
Q P > P
L |
‘_
<_ :
4_
<_
4_
Fig. 3. Stresses in a Plate with a Hole Fig. 4

UNIT OF STRESS

When Newton is taken as unit of force and millimetre as unit of area, unit of stress will be
N/mm?. The other derived units used in practice are kN/mmz, N/mz, KN/m? or MN/m>. A stress of
one N/m? is known as Pascal and is represented by Pa.

Hence, 1 MPa = 1 MN/m® = 1 x 10° N/(1000 mm)? = 1 N/mm>.

Thus one Mega Pascal is equal to 1 N/mm?. In most of the standard codes published unit of stress
has been used as Mega Pascal (MPa or N/mmz).

AXIAL STRESS

Consider a bar subjected to force P as shown in Fig. 5. To maintain the equilibrium the end forces
applied must be the same, say P.

el

<

*‘C.
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/7 Axis of the Bar

Pet—b-F¥ |- R L--—L» P

KA Sectional Plane

(a) Bar Subjected to Pulls

| PR

Pe— - S

v

< > ______ (___JT»P
R <+

-«

<
<

(b) Resisting Force Developed

Fig. 5. Tensile Stresses

The resisting forces acting on a section are shown in Fig. 5b. Now since the stresses are
uniform

R=[pdA=p]dA=pA (&)
where A is the cross-sectional area.

Considering the equilibrium of a cut piece of the bar, we get

P=R ...(5)
From equations (4) and (5), we get
P =pA
p =P/A

Thus, in case of axial load ‘P’ the stress developed is equal to the load per unit area. Under
this type of normal stresses the bar is being extended. Such stress which is causing extension of the
bar is called tensile stress.

A bar subjected to two equal forces pushing the bar is shown in Fig. 6. It causes shortening
of the bar. Such forces which are causing shortening, are known as compressive forces and
corresponding stresses as compressive stresses.

P—br---------- L «— P

Axis of the Bar

(a) Bar Subjected to Compressive Forces

—
P —»] R

(b) Resisting Force Developed
Fig.6. Compressive Stresses

Now R = J pdA = p J dA (as stress is assumed uniform)
For equilibrium of the piece of the bar
P=R=pA

P
or p= Zas in equation 6

Thus, whether it is tensile or compressive, the stress developed in a bar subjected to axial forces,
is equal to load per unit area.

.

.
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STRAIN

No material is perfectly rigid. Under the action of forces a rubber undergoes changes in shape and
size. This phenomenon is very well known to all since in case of rubber, even for small forces
deformations are quite large. Actually all materials including steel, cast iron, brass, concrete, etc.
undergo similar deformation when loaded. But the deformations are very small and hence we cannot
see them with naked eye. There are instruments like extensometer, electric strain gauges which can
measure extension of magnitude 1/100th, 1/1000th of a millimetre. There are machines like universal
testing machines in which bars of different materials can be subjected to accurately known forces of
magnitude as high as 1000 kN. The studies have shown that the bars extend under tensile force and
shorten under compressive forces as shown in Fig. 8.7. The change in length per unit length is known
as linear strain. Thus,

. . Change in Length
Linear Strain = —
Original Length
A
e =— (7
3 (N
_______________________________ BN
“ —> b
¢ L M A le— T

(Original Length) (Extension)

(Shortening) > A e T b
|« L: »>
I

(Original Length)

i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|e—
i
i
—» T | P T e

Fig. 7

When changes in longitudinal direction is taking place changes in lateral direction also take
place. The nature of these changes in lateral direction are exactly opposite to that of changes in
longitudinal direction i.e., if extension is taking place in longitudinal direction, the shortening of
lateral dimension takes place and if shortening is taking place in longitudinal direction extension
takes place in lateral directions (See Fig. 7). The lateral strain may be defined as changes in the
lateral dimension per unit lateral dimension. Thus,

Lateral Strain = Change in Lateral Dimension

Original Lateral Dimension

b'=b_8b
b b

(8

STRESS-STRAIN RELATION

The stress-strain relation of any material is obtained by conducting tension test in the laboratories
on standard specimen. Different materials behave differently and their behaviour in tension and in
compression differ slightly.

Behaviour in Tension

Mild steel. Figure 8 shows a typical tensile test specimen of mild steel. Its ends are gripped into
universal testing machine. Extensometer is fitted to test specimen which measures extension over the
length L;, shown in Fig. 8. The length over which extension is mesured is called gauge length.
The load is applied gradually and at regular interval of loads extension is measured. After certain
load, extension increases at faster rate and the capacity of extensometer to measure extension comes
to an end and, hence, it is removed before this stage is reached and extension is measured from scale

nachine. Load is increased gradually till the specimen breaks.

j : 4

1 i i lr

L]
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\o(—l Cup

[ ] —_
T
Cone

Fig. 9. Tension Test Specimen after Breaking

Fig. 8. Tension Test Specimen

Load divided by original cross-sectional area
is called as nominal stress or simply as stress.
Strain is obtained by dividing extensometer
readings by gauge length of extensometer (L)
and by dividing scale readings by grip to grip
length of the specimen (L,). Figure 810 shows

stress vs strain diagram for the typical mild steel
specimen. The following salient points are
observed on stress-strain curve:

(a) Limit of Proportionality (A): It is the
limiting value of the stress up to which
stress is proportional to strain. -

(b) Elastic Limit: This is the limiting value
of stress up to which if the material is
stressed and then released (unloaded) strain disappears completely and the original length
is regained. This point is slightly beyond the limit of proportionality.

(c) Upper Yield Point (B): This is the stress at which, the load starts reducing and the extension
increases. This phenomenon is called yielding of material. At this stage strain is about 0.125

Stress ——»

F
1
1
1
1
C 1
A I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Strain ——p
Fig. 10

per cent and stress is about 250 N/mm”.
(d) Lower Yield Point (C): At this stage the stress remains same but strain increases for some

time.
370-400 N/mm?. At this stage cross-sectional area at a particular section starts reducing very

(e) Ultimate Stress (D): This is the maximum stress the material can resist. This stress is about
fast (Fig. 8.9). This is called neck formation. After this stage load resisted and hence the

stress developed starts reducing.
(f) Breaking Point (E): The stress at which finally the specimen fails is called breaking point.
At this strain is 20 to 25 per cent.
If unloading is made within elastic limit the original length is regained i.e., the stress-strain curve
follows down the loading curve shown in Fig. 8.6. If unloading is made after loading the specimen

beyond elastic limit, it follows a straight line parallel to the original straight portion as shown by line
FF’in Fig. 10. Thus if it is loaded beyond elastic limit and then unloaded a permanent strain (OF) is

left in the specimen. This is called permanent set.

Stress-strain relation in aluminium and high strength steel. In these elastic materials there is
no clear cut yield point. The necking takes place at ultimate stress and eventually the breaking point
is lower than the ultimate point. The typical stress-strain diagram is shown in Fig. 11. The stress p
at which if unloading is made there will be 0.2 per cent permanent set is known as 0.2 per cent

proof stress and this point is treated as yield point for all practical purposes.

fullen
g
_} P lp
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Stress —p»
Stress —»

0-2 Strain —» Strain —»
Fig. 11. Stress-Strain Relation in Fig. 12. Stress-Strain Relation
Aluminium and High Strength Steel for Brittle Material

Stress-strain relation in brittle material. The typical stress-strain relation in a brittle material
like cast iron, is shown in Fig. 12.

In these material, there is no appreciable change in rate of strain. There is no yield point and
no necking takes place. Ultimate point and breaking point are one and the same. The strain at failure
is very small.

Percentage elongation and percentage reduction in area. Percentage elongation and percentage
reduction in area are the two terms used to measure the ductility of material.

(a) Percentage Elongation: It is defined as the ratio of the final extension at rupture to original

length expressed, as percentage. Thus,

L'-L

Percentage Elongation = x 100 ..(9)

where L — original length, L'~ length at rupture.
The code specify that original length is to be five times the diameter and the portion
considered must include neck (whenever it occurs). Usually marking are made on tension
rod at every 2.5 4" distance and after failure the portion in which necking takes place is
considered. In case of ductile material percentage elongation is 20 to 25.
(D) Percentage Reduction in Area: It is defined as the ratio of maximum changes in the cross-
sectional area to original cross-sectional area, expressed as percentage. Thus,

’

Percentage Reduction in Area = x 100 ...(10)

where A-original cross-sectional area, A’~minimum cross-sectional area. In case of ductile
material, A” is calculated after measuring the diameter at the neck. For this, the two broken
pieces of the specimen are to be kept joining each other properly. For steel, the percentage
reduction in area is 60 to 70.

Behaviour of Materials under Compression

As there is chance to bucking (laterally bending) of long specimen, for compression tests short
specimens are used. Hence, this test involves measurement of smaller changes in length. It results
into lesser accuracy. However precise measurements have shown the following results:

(a) In case of ductile materials stress-strain curve follows exactly same path as in tensile test
up to and even slightly beyond yield point. For larger values the curves diverge. There will
not be necking in case of compression tests.

(b) For most brittle materials ultimate compresive stress in compression is much larger than in
tension. It is because of flows and cracks present in brittle materials which weaken the
material in tension but will not affect the strength in compression.

S,

T
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NOMINAL STRESS AND TRUE STRESS

So far our discussion on direct stress is based on the value obtained by dividing the load by original
cross-sectional area. That is the reason why the value of stress started dropping after neck is formed
in mild steel (or any ductile material) as seen in Fig. 10. But actually as material is stressed its
cross-sectional area changes. We should divide load by the actual cross-sectional area to get true
stress in the material. To distinguish between the two values we introduce the terms nominal stress
and true stress and define them as given below:

Load

Original Cross-sectional Area

Load
Actual Cross-sectional Area

Nominal Stress ...(11a)

True Stress ...11b)

’
s

True Stress-Strain Curve —x 7

So far discussion was based on nominal stress.
That is why after neck formation started (after ultimate
stress), stress-strain curve started sloping down and the

Nominal Stress-Strain Curve

breaking took place at lower stress (nominal). If we

Stress —p

consider true stress, it is increasing continuously as
strain increases as shown in Fig. 13.

Strain ——»

Fig. 13. Nominal Stress-Strain Curve
and True Stress-Strain Curve for Mild
Steel.

FACTOR OF SAFETY
In practice it is not possible to design a mechanical component or structural component permitting

stressing up to ultimate stress for the following reasons:
1. Reliability of material may not be 100 per cent. There may be small spots of flaws.
2. The resulting deformation may obstruct the functional performance of the component.
3. The loads taken by designer are only estimated loads. Occasionally there can be overloading.
Unexpected impact and temperature loadings may act in the lifetime of the member.
4. There are certain ideal conditions assumed in the analysis (like boundary conditions). Actually
ideal conditions will not be available and, therefore, the calculated stresses will not be 100
per cent real stresses.
Hence, the maximum stress to which any member is designed is much less than the ultimate
stress, and this stress is called Working Stress. The ratio of ultimate stress to working stress is called
factor of safety. Thus

Factor of Safety = W ...(8.12)

Working Stress

In case of elastic materials, since excessive deformation create problems in the performance of
the member, working stress is taken as a factor of yield stress or that of a 0.2 proof stress (if yield
point do not exist).

Factor of safety for various materials depends up on their reliability. The following values are
commonly taken in practice:

1. For steel — 1.85

2. For concrete — 3

3. For timber — 4 to 6

.I|
; g I
b= 28
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HOOKE'S LAW

Robert Hooke, an English mathematician conducted several experiments and concluded that stress

is proportional to strain up to elastic limit. This is called Hooke’s law. Thus Hooke’s law is, up to
elastic limit

pece (13a)
where p is stress and e is strain
Hence, p = Ee ...(13b)

where E is the constant of proportionality of the material, known as modulus of elasticity or Young’s
modulus, named after the English scientist Thomas Young (1773-1829).

However, present day sophisticated experiments have shown that for mild steel the Hooke’s law
holds good up to the proportionality limit which is very close to the elastic limit. For other materials,
Hooke’s law does not hold good. However, in the range of working stresses, assuming Hooke’s
law to hold good, the relationship does not deviate considerably from actual behaviour.
Accepting Hooke’s law to hold good, simplifies the analysis and design procedure
considerably. Hence Hooke’s law is widely accepted. The analysis procedure accepting Hooke’s law
is known as Linear Analysis and the design procedure is known as the working stress method.

EXTENSION/SHORTENING OF A BAR

Consider the bars shown in Fig. 14

A
P 4—{ }_‘_’___,' P
¢ L b A le—
P —>| i |<7 P
¢ L » A le—
Fig. 14
. P
From equation (8.6), Stress p = 1
. . A
From equation (8.7), Strain, e = 7

From Hooke’s Law we have,

_ Stress _p P/A _PL

E _P_ I
Strain e A/L AA

or A= PL (14
AE

Example 1. A circular rod of diameter 16 mm and 500 mm long is subjected to a tensile force 40

kN. The modulus of elasticity for steel may be taken as 200 kN/mm?. Find stress, strain and elongation
of the bar due to applied load.

Solution: Load P = 40 kN = 40 x 1000 N
E = 200 kN/mm? = 200 x 10’ N/mm?>
L = 500 mm
Diameter of the rod d = 16 mm
2
Therefore, sectional area A= ﬂ =T %16
4 4
= 201.06 mm?

_IS o, o
i
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Stress p = — = 20x1000_ " 9¢ 94 N/mm?
A 20106

Strain e = 2 = _1989% _ 0009947
E 200x10°

PL _ 4.0x1000 x 500

= 0.497 mm
AE  201.06 x 200 x 10°

Elongation A =

Example 2. A Surveyor’s steel tape 30 m long has a cross-section of 15 mm x 0.75 mm. With this,
line AB is measure as 150 m. If the force applied during measurement is 120 N more than the force
applied at the time of calibration, what is the actual length of the line?
Take modulus of elasticity for steel as 200 kN/mm?.
Solution: A =15 %075 = 11.25 mm’
P =120 N, L =30 m =30 x 1000 mm
E = 200 kN/mm* = 200 x 10’ N/mm®

Elongation A = E=w = 1.600 mm
AE 11.25x200x10

Hence, if measured length is 30 m.
Actual length is 30 m + 1.600 mm = 30.001600 m

Actual length of line AB = % x 30.001600 = 150.008 m

Example 3. A hollow steel tube is to be used to carry an axial compressive load of
160 kN. The yield stress for steel is 250 N/mm?. A factor of safety of 1.75 is to be used in the design.
The following three class of tubes of external diameter 101.6 mm are available.

Class Thickness
Light 3.65 mm
Medium 4.05 mm
Heavy 4.85 mm

Which section do you recommend?
Solution: Yield stress = 250 N/mm?

Factor of safety = 1.75

Therefore, permissible stress

p = 250 _ 142,857 N/mm>
1.75
Load P = 160 kN = 160 x 10° N
P
but ==
u P A
3
ie. 142,857 = 160x107
A
3
A = 100XT07 o0
142.857

For hollow section of outer diameter ‘D’ and inner diameter ‘d’

%(D2 ~ P =1120

A

%(101.62 P = 1120
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d* = 889653 .. d = 9432 mm

D-d 101.6-94.32
2 2
Hence, use of light section is recommended.
Example 4. A specimen of steel 20 mm diameter with a gauge length of 200 mm is tested to
destruction. It has an extension of 0.25 mm under a load of 80 kN and the load at elastic limit is
102 kN. The maximum load is 130 kN.
The total extension at fracture is 56 mm and diameter at neck is 15 mm. Find

t = = 3.63 mm

(i) The stress at elastic limit.
(ii) Young’s modulus.
(iii) Percentage elongation.
(iv) Percentage reduction in area.
(v) Ultimate tensile stress.
Solution: Diameter d = 20 mm

2
Area A = % = 314.16 mm?

Load at elastic limit

(i) Stress at elastic limit =
Area

3
_ 102x107 454675 N/mm?
314.16

. Stress L AT
(ii) Young’s modulus E = - within elastic limit
g
Strain

_ PIA _80x10°/314.16
A/L 0.25/200

= 203718 N/mm?>

Final extension

(iii) Percentage elongation =

Original length
= 6 x 100 = 28
200

(iv) Percentage reduction in area

_ Initial area — Final area

& x 100
Initial area
T 202 - T 152
-4 4 x 100 = 43.75

E><202
4

Ultimate Load

(v) Ultimate Tensile Stress =
Area

_ 130 10°
314.16

= 413.80 N/mm>.

Am

Jh
317
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BARS WITH CROSS-SECTIONS VARYING IN STEPS

A typical bar with cross-sections varying in steps and subjected to axial load is as shown in Fig.
15(a). Let the length of three portions be L, L, and L; and the respective cross-sectional areas of
the portion be A, A,, A; and E be the Young’s modulus of the material and P be the applied axial

load.
Figure 15(b) shows the forces acting on the cross-sections of the three portions. It is obvious

that to maintain equilibrium the load acting on each portion is P only. Hence stress, strain and
extension of each of these portions are as listed below:

—>p

f—L, ba Ly b« Ls >

P +— > P > P < '—» P <—|:|—> P
Section Through 1 Section Through 2 Section Through 3
(b)
Fig.15. Typical Bar with Cross-section Varying in Step
Portion Stress Strain Extension
1 p = o= P1__P A= Pl
A E = AE AE
_F _P2__P_ _ P
i P % TTETAE " e
3 p. =£ 93=&=_P A3=_PL3
As E = AE AE

Hence total change in length of the bar
A=A+ + 0y =Pl Pl PLy
AE AE AFE
Example 5. The bar shown in Fig. 16 is tested in universal testing machine. It is observed that at

a load of 40 kN the total extension of the bar is 0.280 mm. Determine the Young’s modulus of
the material.

(15)

y 1 y

d;=25mm d, =20 mm d; =25 mm

f ! i
[e——150 mm—pje——— 250 mm ————pj¢— 150 mm —>]

Fig. 16

P+ — P

PL,_ 40x10° x150

Solution: Extension of portion 1, -
AE e 25°E

PL, 40x10° x250
AE §><202E

Extension of portion 2,

WL
gHg I
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PL; 40x10° x 150

Extension of portion 3,
AE - TyosPE
4
. 40x10° 4{150 250 150}
Total extension = ——— X —{——+——+——
E T (625 400 625

3
0280 = 40 %10 xix 1.112
E T E

E = 200990 N/mm?
BARS WITH CONTINUOUSLY VARYING CROSS-SECTIONS

When the cross-section varies continuously, an elemental length of the bar should be considered and
general expression for elongation of the elemental length derived. Then the general expression should

be integrated over entire length to get total extension.

Example 8. A bar of uniform thickness ‘t’ tapers uniformly from a width of b; at one end to b,at
other end in a length ‘L’ as shown in Fig. 18. Find the expression for the change in length of the

bar when subjected to an axial force P.

! | - AT
- b —> P é b
| LA
— P
X | b= ax Cross-section
fa L »
Fig. 19
Solution: Consider an elemental length dx at a distance x from larger end. Rate of change of breadth
is M
L
. . . bl - bz
Hence, width at section x is b = b, — A b, — kx
where k= bizb
L

Cross-section area of the element = A = #(b; — kx)
Since force acting at all sections is P only,

Extension of element = %
AE
__ Pdx
(by — kx)tE
L L
Total extension of the bar = J Pdx =£ dx
0 (b —kx)tE tEJ0 (b —kx)

L
P(1
(E [—kj|:10g (b, - kx):|0

L
= P —log(bl—bl_bzx)
tEk L 0

2273
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P P b
— [~ log b, + log b;] = — log —L
i log b+ log il = 2 log b,

_PL e .(16)
tE(b, —b,) b,

A tapering rod has diameter d; at one end and it tapers uniformly to a diameter d,at the other
end in a length L as shown in Fig. 20. If modulus of elasticity of the material is E, find its
change in length when subjected to an axial force P.

T f v

o
P b — P
l G
|<—x—>|T<— dx .
| Cross-section
e L >
Fig. 20

Solution: Change in diameter in length L is d| — d,
d —d,
L
Consider an elemental length of bar dx at a distance x from larger end. The diameter of the bar
at this section is

Rate of change of diameter, k =

d=d - kx.

2
Cross-sectional area A= %:%(dl - kx)2

Extension of the element = ni
Z(d1 —kx)*E

L
Extension of the entire bar A= j P dx

T
0 2@ —kx)*E

4P b dx
nE Jo (d, — kx)*

L
_4r( 1
- mEk\d, —kx ),

4p 1 1 .
= 7tE(d1_d2)(d2_le’ since d; — kL = d,
L

Ao 4PL (di—dy) _ _4PL (1)
nEd, -d,)  dd, nkd,d,

%

T
j;i*‘af

i 3
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Example 6. A steel flat of thickness 10 mm tapers uniformly from 60 mm at one end to 40
mm at other end in a length of 600 mm. If the bar is subjected to a load of 80 kN, find its
extension. Take E = 2 x 10° MPa. What is the percentage error if average area is used for
calculating extension?

Solution: Now, t = 10 mm b, = 60 mm by = 40 mm
L = 600 mm P =80 kN = 80000 N
Now, 1 MPa = 1 N/mm’
Hence E =2 x 10° N/mm?
Extension of the tapering bar of rectangular section
A= PL el

 1E(b, — by) b,

_ 80000 x 600 log 80
10x2 x 10° (60 — 40) & 40

= 0.4865 mm
If averages cross-section is considered instead of tapering cross-section, extension is given by
A= PL
ALE
Now A, = ‘Ww;ﬂ = 500 mm?>
A = B0000X600 " _ 4 430 mm
500 x2x10
0.4865 - 0.48
Percentage error =— x 100
0.4865
= 1.348
SHEAR STRESS Q
Figure 22 shows a bar subject to direct shearing v
force i.e., the force parallel to the cross-section of
bar. The section of a rivet/bolt subject to direct shear T
is shown in Fig. 23. Let Q be the shearing force p
and ¢ the shearing stress acting on the section. Then, R
with usual assumptions that stresses are uniform we l
get, 7 \
Q
Fig. 22. Direct Shear Force on a
Section
Q Q 4—1‘
Qe— |
| o
Fig. 23. Rivet in Direct Shear
R=JqgdA=gqladA=qA
For equilibrium O=R=¢gA
. Q
ie., = = ...(18
4= (18)

Thus, the direct stress is equal to shearing force per unit area.

Ao

Y,

I = s
£ 3
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POISSON’S RATIO

When a material undergoes changes in length, it undergoes changes of opposite nature in lateral
directions. For example, if a bar is subjected to direct tension in its axial direction it elongates and
at the same time its sides contract (Fig. 27).

T
|

Fig. 27. Changes in Axial and Lateral Directions

If we define the ratio of change in axial direction to original length as linear strain and change
in lateral direction to the original lateral dimension as lateral strain, it is found that within elastic limit
there is a constant ratio between lateral strain and linear strain. This constant ratio is called
Poisson’s ratio. Thus,

. . Lateral strain
Poisson’s ratio = ———— ...(19)
Linear strain

It is denoted by i, or lL. For most of metals its value is between 0.25 to 0.33. Its value for steel
m

is 0.3 and for concrete 0.15.
VOLUMETRIC STRAIN

When a member is subjected to stresses, it undergoes deformation in all directions. Hence, there will
be change in volume. The ratio of the change in volume to original volume is called volumetric
strain.

oV

Th = — ..(20
us e, v (20)

where ey, = Volumetric strain
&y = Change in volume
V = Original volume
It can be shown that volumetric strain is sum of strains in three mutually perpendicular directions.

ie., e,=e¢ . +e +e,

For example consider a bar of length L, breadth b and depth d as shown in Fig. 28.

. .
Tl.x! %;

< L V'

Fig. 28

Now, V = Lbd
Since volume is function of L, b and d.
OV =0Lbd+ L d+Lbdd

v _ &
v Lbd

8L &b &d

= —+—+—

e
V7L b d
ey=e.te +e;

Now, consider a circular rod of length L and diameter ‘d’ as shown in Fig. 29.

i e
| gz 12
217g¢
MEESE DEPARTMENT OF MECHANICAL ENGINEERING



Fig. 29
T »
Volume of the bar V= 1 d’L
T T 5 . . .
oV = 4 2déd L + 4 d” dL (since v is function of d and L).
1% dd oL
LT B
~d’L
4

od

ey=e, te +e; s1nceey=eZ=7

In general for any shape volumetric strain may be taken as sum of strains in three mutually
perpendicular directions.

ELASTIC CONSTANTS

Modulus of elasticity, modulus of rigidity and bulk modulus are the three elastic constants. Modulus
of elasticity (Young’s Modulus) ‘E’ has been already defined as the ratio of linear stress to linear
strain within elastic limit. Rigidity modulus and Bulk modulus are defined in this article.

Modulus of Rigidity: It is defined as the ratio of shearing stress to shearing strain within elastic
limit and is usually denoted by letter G or N. Thus

q
G=— (21
0 2

where G = Modulus of rigidity
g = Shearing stress
and ¢ = Shearing strain

Bulk Modulus: When a body is subjected to identical stresses p in three mutually perpendicular
directions, (Fig. 30), the body undergoes uniform changes in three directions without undergoing
distortion of shape. The ratio of change in volume to original volume has been defined as volumetric
strain (e,). Then the bulk modulus, K is defined as

K=2
eV
where  p = identical pressure in three mutually perpendicular directions

v

e, = —, Volumetric strain
v

A
v = Original volume

, = Change in volume

Thus bulk modulus may be defined as the ratio of identical pressure ‘p’ acting in three mutually
perpendicular directions to corresponding volumetric strain.

f
_ocfp===== === _wP
e ?/v P
I 1
Pt —m>p P —p
I 1
] ===
p =
| T o
p
(a)
.-J'i"ﬁ'f!"fz".ﬁ Fig. 30

T 1
LA
j:l—% Q=
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Figure 30 shows a body subjected to identical compressive pressure ‘p’ in three mutually
perpendicular directions. Since hydrostatic pressure, the pressure exerted by a liquid on a body within
it, has this nature of stress, such a pressure ‘p’ is called as hydrostatic pressure.

RELATIONSHIP BETWEEN MODULUS OF ELASTICITY E B 4_q_C’ c
AND MODULUS OF RIGIDITY 'f\

"

7/
/!
va
7/

\

Consider a square element ABCD of sides ‘a’ subjected to pure shear ‘g’
as shown in Fig. 8.31. AEC’D shown is the deformed shape due to shear

g. Drop perpendicular BF to diagonal DE. Let ¢ be the shear strain and ¢
G modulus of rigidity.

-
7/
7/
7/
7
/
7/
-
«—
e}
“«—o—>

> -
A

DE — DF
DF
_EF
" DB
__EF
" ABV2

Since angle of deformation is very small we can assume ZBEF = 45°, hence EF = BE cos 45°
EF  BE cos 45°
Strain in diagonal BD = —— =228
BD  AB\2
atan ¢ cos 45°

a2

Now, strain in diagonal BD =

(Since ¢ is very small)

q . q

= —X—, since ¢ = — (1
%G 0== (1
Now, we know that the above pure shear gives rise to axial tensile stress g in the diagonal

direction of DB and axial compression ¢ at right angles to it. These two stresses cause tensile strain
along the diagonal DB.

Tensile strain along the diagonal DB = 4, ui = l(l +U) ..(2)
E E E
From equations (1) and (2), we get

1 . 49_4

—x===(1+

2 %G E( 19)

E =2G(l + ) (22)

RELATIONSHIP BETWEEN MODULUS OF ELASTICITY AND BULK MODULUS

Consider a cubic element subjected to stresses p

in the three mutually perpendicular direction x, y, 4
z as shown in Fig. 32.

Now the stress p in x direction causes tensile =

strain % in x direction while the stress p in y and Té:x pe—i

z direction cause compressive strains [ AT p/
E

direction.

p P P l
Hence, ==—-Uu=—u=
“=g HETHE P
Fig. 32
=La-op
E

- D
Similarly e,= E(l -2u)
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p
eZ=E(1—2|.L) (1)
: . _ _3p
Volumetric strain e, =e +e +e = F(l_ 2u)

From definition, bulk modulus K is given by

_ P 14
f e T wa-m
E
or E =3K(1 - p) ..(2)
Relationship between EGK:
We know E =2G(1 + W ...(a)
and E = 3K - 2w ...(b)

By eliminating 1 between the above two equations we can get the relationship between E, G,
K, free from the term L.

E
From equation =—-1
quation (a) =~
Substituting it in equation (b), we get

roio( )
rmgee) (- g)

ok - KE
G
E(l + 3—Kj =9K
G
G+3K
or E( ) =9K ...(0)
G
or = kG ...(23a)
G+3K
Equation (c) may be expressed as
9 G+3K
E KG

&
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Example 7. A circular rod of 25 mm diameter and 500 mm long is subjected to a tensile force of
60 kN. Determine modulus of rigidity, bulk modulus and change in volume if Poisson’s ratio =
0.3 and Young’s modulus E = 2 % 10° N/mm?.

Solution: From the relationship

E =2G(1 + W) = 3k(1 - 2u)

5
We get, - E_ 2X10° 47692 x 105 N/mm?
20+ 2(1+03)
E 2x10°

and

- = =1. 5 2
K= 30120 " 30 2x05 = 1667 10° N/mm

P_60x10°
Longitudinal stress = — = P

= %252
4

= 122.23 N/mm?

Stress _ 122.235 —61.115 x 105
E 2x10

Lateral strain = e, = — lle,  and e, = — le,

Linear strain =

Volumetric strain e, = e, + e, + e,

e (1 = 2w
61.115 x 107 (1 — 2 x 0.3)
= 24.446 x 107

1
Q

<
I

but Change in volume

v
Change in volume = ¢, X v
=24.446 x 107 x g x (25%) x 500

= 60 mm®

Example 8. A 400 mm long bar has rectangular cross-section 10 mm x 30 mm. This bar is
subjected to

(i) 15 kN tensile force on 10 mm x 30 mm faces,

(ii) 80 kN compressive force on 10 mm x 400 mm faces, and
(iii) 180 kN tensile force on 30 mm x 400 mm faces.
Find the change in volume if E = 2 x 10° N/mm? and u =03

~
180 kN 30

Fig 33

L

oL
_I; <2
it a7
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Example 9. In a laboratory, tensile test is conducted and Young’s modulus of the material is

found to be 2.1 x 10° N/mm?. On the same material torsion test is conducted and modulus of rigidity

is found to be 0.78 x 10° N/mm?. Determine Poisson’s Ratio and bulk modulus of the material.
[Note: This is usual way of finding material properties in the laboratory].

Solution: E =21 x 10° N/mm?
G = 0.78 x 10° N/mm>
Using relation E =2G1 + )
we get 2.1 x 10° =2 x 0.78 x 10° (1 + )
1346 = 1 +
or n = 0.346
From relation E =3K(1 - 2u)
we get 2.1 x 10° = 3 x K(1 — 2 x 0.346)

K = 2275 x 10° N/mm’
Example 10. A material has modulus of rigidity equal to 0.4 x 1 0° N/mm? and bulk modulus equal
10 0.8 x 10° N/mm?. Find its Young’s Modulus and Poisson’s Ratio.

Solution: G = 0.4 x 10° N/mm?>
K=0.8 x 10° N/mm’
9GK

ing the relati E=
Using the relation 3K+ G

Ee 9x0.4x10° x0.8x 10
3% 08x10° +0.4 x10°

E = 1.0286 x 10° N
From the relation E =2G(1 + )
we get 1.0286 x 10° = 2 x 0.4 x 10°(1 + )
12857 =1 +
or p = 0.2857

ndles
Fh =,
P
31gd
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COMPOSITE/COMPOUND BARS

Bars made up of two or more materials are called composite/compound bars. They may have same
length or different lengths as shown in Fig. 34. The ends of different materials of the bar are held
together under loaded conditions.

Rigid
connection

«— Material 2 Material 1 Material 2

A A LALNNENENAAAN NN
YT

Rigid support

Fig. 34

Consider a member with two materials. Let the load shared by material 1 be P, and that by
material 2 be P,. Then
(i) From equation of equilibrium of the forces, we get
P=P1+P2 ...2461)
(ii) Since the ends are held securely, we get
Al = Al,
where Al; and Al, are the extension of the bars of material 1 and 2 respectively
AL _ KL

ie. E = AE, ...24b)

Using equations 8.24(a) and (b), P, and P, can be found uniquely. Then extension of the system

P,L
can be found using the relation Al = AL or Al = =22 since Al = Al, = Al,.
AE, AE,

The procedure of the analysis of compound bars is illustrated with the examples below:

Example 11. A compound bar of length 600 mm consists of a strip of aluminium 40 mm wide and
20 mm thick and a strip of steel 60 mm wide x 15 mm thick rigidly joined at the ends. If elastic
modulus of aluminium and steel are 1 x 10° N/mm? and 2 x 10° N/mm®, determine the stresses
developed in each material and the extension of the compound bar when axial tensile force of 60
kN acts.

Solution: The compound bar is shown in the figure 8.36.
Data available is
L = 600 mm
P =60 kN = 60 x 1000 N
A, =40 x 20 = 800 mm?
60 x 15 = 900 mm?
=1 x 10° N/mm?, E, = 2 x 10° N/mm?.

SIS
|

L
2p¥al

i,
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Let the load shared by aluminium strip be P, and that shared by

steel be P,. Then from equilibrium condition £
P, + P, = 60 x 1000 (1)
From compatibility condition, we have
A, = A
Steel
PL PL 600 mm 4— Aluminium
AE, AE,
. P, x600 P, x600
L 800 x1x10° 900 x2x10°
P, =225P, ..(2) x
Substituting it in eqn. (1), we get 60 kN
P, + 225 P, =60 x 1000 Fig. 35
ie. P, = 18462 N.

P, =225 x 18462 = 41538 N.

. . . . P, 18462
Stress in aluminium strip = —=———
A, 800
= 23.08 N/mm’
P 41
Stress in steel strip = —“=ﬂ = 46.15 N/mm>
A 900

P,L 18462 x 600
AE, 800x1x10°

Extension of the compound bar =

Al = 0.138 mm.
Copper tube

Example 12. A compound bar consists of a circular rod of steel of 25
mm diameter rigidly fixed into a copper tube of internal diameter 25 mm
and external diameter 40 mm as shown in Fig. 36. If the compound bar is
subjected to a load of 120 kN, find the stresses developed in the two

materials.
Steel rod

Take E, = 2 xI10° N/imm? Fig. 36
and E, = 1.2 % 10° Nemnr.

Solution: Area of steel rod A = % % 257 = 490.87 mm’

Area of copper tube A, = E (40° - 25%) = 765.76 mm>

From equation of equilibrium,

P, + P, =120 x 1000 (1)
where P, is the load shared by steel rod and P, is the load shared by the copper tube.

From compatibility condition, we have

A, = A,
AL _FL
AE,~ AE,
Py F.
49087x2x10° 76576 x12x 10°
P, = 1.068 P, )

From eqns. (1) and (2), we get

_IS i
i
‘%‘i-“g&f
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1.068 P, + P, = 120 x 1000
~ 120x1000

" 2068

P, =1.068 P, = 61973 N
58027
9765.76

= 126.25 N/mm?

= 58027 N

Stress in copper = = 75.78 N/mm?>

Stress in steel = @

Example 13. Three pillars, two of aluminium and one of steel support a rigid platform of 250 kN
as shown in Fig. 38. If area of each aluminium pillar is 1200 mm® and that of steel pillar is 1000
mn?, find the stresses developed in each pillar.

Take E, = 2 x 10° Nlmm® and E, = 1 x 10° Nimm?’.

Solution: Let force shared by each aluminium pillar be P, and that
shared by steel pillar be P;.

250 kN

The forces in vertical direction = 0 —
P, + P, + P, =250
2P, + P, =250 (D)

From compatibility condition, we get

4— 160 mm—>»]
- Aluminium

[ 4—— 240 mm——p|
- Steel
- Aluminium

As = Aa Fig. 38
PsLs _ PaLa
ASEX - AaEa
P x240  P,x160
1000x2x10° 1200 x 1x10°
P, = 1111 P, (2)

From eqns. (1) and (2), we get
P, (2 + 1.111) = 250
P, = 80.36 kN

Hence from eqn. (1),
P, =250 — 2 x 80.36 = 89.28 kN

Stresses developed are

R 89281000 _ oo,
O T A 1000 oo vmm
o, = 8036 <1000 _ ¢ 97 N/mm?

1200

Example 14. A steel bolt of 20 mm diameter passes centrally through a copper tube of internal
diameter 28 mm and external diameter 40 mm. The length of whole assembly is 600 mm. After tight
fitting of the assembly, the nut is over tightened by quarter of a turn. What are the stresses introduced
in the bolt and tube, if pitch of nut is 2 mm? Take E, = 2 x 10° N/mm? and E . =12x 10° N/mm?.

Copper tube
/— pp Copper tube
Steel bolt
Steel bolt
j¢————— 600 mm ————» ()
(a)
’ Fig. 39

72 %

i,
I
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Solution: Figure 8.40 shows the assembly. Let the force shared by bolt be P, and that by tube be

P Since there is no external force, static equilibrium condition gives

P,+P, =0 or P =-P,
i.e., the two forces are equal in magnitude but opposite in nature. Obviously bolt is in tension and
tube is in compression.

1
Let the magnitude of force be P. Due to quarter turn of the nut, the nut advances by 1 x pitch

=lx2=0.5mm.
4

[Note. Pitch means advancement of nut in one full turn]
During this process bolt is extended and copper tube is shortened due to force P developed. Let
A, be extension of bolt and A, shortening of copper tube. Final position of assembly be A, then

A+ A, =A
AL (RL. 5
ASES ACEC
P x 600 . P x 600 ~
(r/4)x20* x2x10°  (m/4)(40* —28%)x 12x10°
P><6005 21 + i 12 - 05
(n/4)x10° | 20> x2  (40° —28%)x 1.2
P = 288168 N
P, 28816.8
py=-t=——""— = 9172 N'mm’
A, (m/4)x20
P .
p.=-<= 2881? 8 — = 44.96 N/mm’
A, (m/4)(40% —28%)

£ 3
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THERMAL STRESSES

Every material expands when temperature rises and contracts when temperature falls. It is established
experimentally that the change in length A is directly proportional to the length of the member L and
change in temperature 7. Thus
A o< tL
=o L ...(8.25)
The constant of proportionality o is called coefficient of thermal expansion and is defined as
change in unit length of material due to unit change in temperature. Table 8.1 shows coefficient of
thermal expansion for some of the commonly used engineering materials:

Table 1
Material Coefficient oif thermal
expansion
Steel 12 x 107°°C
Copper 17.5 x 107%/°C
Stainless steel 18 x 107%/°C
Brass, Bronze 19 x 107%°C
Aluminium 23 x 107%°C

If the expansion of the member is freely permitted, as shown in Fig. 8.41, no temperature
stresses are induced in the material.

le— ctL ]

Fig. 40 Free Expansion Permitted

If the free expansion is prevented fully or partially the stresses are induced in the bar, by the
support forces. Referring to Fig. 41,

)
\m.»;lmm
W?TW

T

O]
Fig. 41
If free expansion is permitted the bar would have expanded by
A=otl

Since support is not permitting it, the support force P develops to keep it at the original position.
Magnitude of this force is such that contraction is equal to free expansion, i.e.

PL .
AE = O

or p=Eaot ...(26)
I s. It is compressive in nature in this case.

[ re N |
.i_.aa{"
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Consider the case shown in Fig. 8.43 in which free expansion is prevented partially.

ry

[
¥y
>
7K

1

Fig. 42

In this case free expansion = o tL
Expansion prevented A = o tL — d

The expansion is prevented by developing compressive force P at supports
PL

AE " A=otL -3 ..(27)

Example 15. A steel rail is 12 m long and is laid at a temperature of 18°C. The maximum
temperature expected is 40°C.

(i) Estimate the minimum gap between two rails to be left so that the temperature stresses do
not develop.

(i1) Calculate the temperature stresses developed in the rails, if:
(a) No expansion joint is provided.

(b) If a 1.5 mm gap is provided for expansion.

(iii) If the stress developed is 20 N/mm?, what is the gap provided between the rails?
Take E = 2 x 10° N/mm® and o. = 12 x 107°/°C.
Solution:

(i) The free expansion of the rails

=otL=12x%x 109 x (40 — 18) x 12.0 x 1000
= 3.168 mm

Provide a minimum gap of 3.168 mm between the rails, so that temperature stresses
do not develop.

(ii) (a) If no expansion joint is provided, free expansion prevented is equal to 3.168 mm.

ie. A = 3.168 mm
PL .
AE - 3.168

P _3168x2x10°

P T T 2 %1000

= 52.8 N/mm?>

(b) If a gap of 1.5 mm

is provided, free expansion prevented A = o tL — & = 3.168 — 1.5 =
1.668 mm.

PL
The compressive force developed is given by E 1.668

P 1.668x2x10°
or - —

= 27.8 N/mm?>
A 12 X1000

o
_I; <2
it a7
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(iii) If the stress developed is 20 N/mm?, then p = % =20

If & is the gap, A=o L - &

PL 3168 -8
AE
ie. 20 x 1221000 _ 56 5
2x10

& =3.168 — 1.20 = 1.968 mm

Example 16. The composite bar shown in Fig. 43 is rigidly fixed at the ends A and B. Determine
the reaction developed at ends when the temperature is raised by 18°C. Given

E, = 70 kN/mm?
E, = 200 kN/mm®
a, = 11 x 10°7C
o, = 12 x 10°%°C
2 2
/—Aa=600 mm /—AS=400 mm
Aluminium Steel
[e—15m—ple—30m—»|
(@)
(b)
Fig.43
Solution: Free expansion = o, tL, + OL;
=11 x 10 x 18 x 1500 + 12 x 10 x 18 x 3000
= 0.945 mm
Since this is prevented
A = 0.945 mm.

E, = 70 kKN/mm* = 70000 N/mm? ;
E, = 200 kN/mm? = 200 x 1000 N/mm’

If P is the support reaction,

PL, , PL
AaEa ASES
, 1500 3000
ie. 0.945 = +
600 x 70000 400 x 200 x 1000
0.945 = 73214 x 10° P
or P =12907.3 N

T
b

J el
! It
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THERMAL STRESSES IN COMPOUND BARS

When temperature rises the two materials of the compound bar experience different free expansion.
Since they are prevented from seperating, the two bars will have common position. This is possible
only by extension of the bar which has less free expansion and contraction of the bar which has more
free expansion. Thus one bar develops tensile force and another develops the compressive force. In
this article we are interested to find such stresses.

Consider the compound bar shown in Fig. 45(a). Let 0, o, be coefficient of thermal expansion
and E,|, E, be moduli of elasticity of the two materials respectively. If rise in temperature is ‘f’,

Free expansion of bar 1 = o 1L
Free expansion of bar 2 = o, tL

Let a; > a,. Hence the position of the two bars, if the free expansions are permitted are at AA and
BB as shown in Fig.

dtlL
it
"'.B 2
Bar -2 Bar -2 ¢—p P, i
———'B 2: A
— A e
____________ .
Bar-1 Bar-1 i —FP,
_______ SRR
ot ——]
I
'c

Fig. 45

Since the two bars are rigidly connected at the ends, the final position of the end will be
somewhere between AA and BB, say at CC. It means Bar—1 will experience compressive force P,
which contracts it by A; and Bar-2 experience tensile force P, which will expand it by A,.

The equilibrium of horizontal forces gives,
P, =P, say P
From the Fig. 8.46 (b), it is clear,
o, tL — Ay =0, tL + A,
A+ Ay=o0y tL - 0y tL = (0 — 0,) tL.
If the cross-sectional areas of the bars are A; and A,, we get
PL PL
AE " AE

From the above equation force P can be found and hence the stresses P, and P, can be determined.

= (0 -0y 1L ..(8.28)

Fek e
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Example 17. A bar of brass 20 mm is enclosed in a steel tube of 40 mm external diameter and
20 mm internal diameter. The bar and the tubes are initially 1.2 m long and are rigidly fastened at
both ends using 20 mm diameter pins. If the temperature is raised by 60°C, find the stresses induced
in the bar, tube and pins.

Given: E, =2x 10° N/mm’®
E, = 1 x 10° N/mm’
o, = 11.6 x 10°%/°C
a, = 18.7 x 10°°/°C.
Solution:
Pi —N%tl'u— Steel tub
n eel tupe
¥ B c
| A
I 3
! 20 40
U TAs A v l
l4 1200 mm »] B C
I‘— %‘b—ﬂ Brass rod
Fig. 46

1=60° E, =2 x10° N/mm’ E, =1 x 10° N/mm*

o, = 11.6 x 10°°C o, = 18.7 x10°%/°C

s

A

s

2(402 —20%) A, = g x 207
= 942.48 mm’ = 314.16 mm*
Since free expansion of brass (o, tL) is more than free expansion of steel (o, tL), compressive
force P, develops in brass and tensile force P, develops in steel to keep the final position at CC
(Ref: Fig. 46).

Horizontal equilibrium condition gives P, = P, say P. From the figure, it is clear that

s

Ay + Ay = oy tL — ol = (o, — o)l
where A, and A, are the changes in length of steels and brass bars.

PL  PL _ (187~ 11.6) x 10 x 60 x 1200.
AsEs AbEb
+ ! -6
P 200 1 g 48 %2 x10° T 31416 x1x10° | = 11 X 107 x 60 x 1200
P =114713 N
Stress in steel = — =753 _ 1517 Nimm?
ress in steel = A omag T % 'mm
and Stress in brass = izw = 36.51 N/mm*
A, 314.16
The pin resist the force P at the two cross-sections at junction of two bars.
N P
Shear stress in pin = ————
2 X Area of pin
11471.
" - MY 826 Nimm?
SR 2 xm/4 %20

I o5, Sy
AL e
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10.

11.

12.

13.

14.

15.

16.

17.

IMPORTANT FORMULAE
If stress is uniform
P
p = —
A

N L . Change in length
(i) Linear strain = ———————=—
Original length

Change in lateral dimension

(i) Lateral strain = — : .
Original lateral dimension

. , . Lateral strain . . L
Poisson’s ratio = ———  , within elastic limit.
Linear strain

’

Percentage elongation = x 100.

’

Percentage reduction in area = x 100.

Load

Nominal stress = —— - .
Original cross-sectional area

Load
Actual cross-sectional area

True stress =

Ultimate stress
Factor of safety = —————
Working stress

. Yield stress
However in case of steel, = —— .
Working stress
Hooke’s Law, p = Fe.

Extension/shortening of bar = %

Extension of flat bar with linearly varying width and constant thickness =

4PL  PL
nEdd, (n/4dd,)E

Extension of linearly tapering rod =

Q

Direct shear stress = X

Volumetric strain e = 67‘/ =e te +e,.
E=2G (1 +p)=3K (1 -2w
- 93,1
E G K’
Extension due to rise in temperature:
A=aotL
Thermal force, P is given by
PL
E - extension prevented.

MRS DEPARTMENT OF MECHANICAL ENGINEERING
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Tutorial questions

1. Draw stress strain diagram for ductile materials and indicate all salient features on it. Explain the various
mechanical properties can be estimated from that diagram.
2. Derive the relations between E,G,K
Derive the expression for the elongation for the circular tapered bar
4. Two parallel walls 6m apart are stayed together by a 25 mm diameter steel rod at
80°C passing through washers and nuts at ends. If the rod cools down to 22°C,
calculate the pull induced in the rod, if
(a) the walls do not yield and
(b) the total yield at ends is 1.5 mm
E steet = 2X10°N/mm?, o seet = 11x10—6 per’C.
5. A)A metallic rod of 1 cm diameter, when tested under an axial pull of 10 kN was
found to reduce its diameter by 0.0003 cm. The modulus of rigidity for the
rod is 51 KN/mm?. Find the Poisson’s ratio, modulus of elasticity and Bulk Modulus.

w

b) An aluminium bar 60 mm diameter when subjected to an axial tensile load 100
kN elongates 0.20 mm in a gage length 300 mm and the diameter is decreased
by 0.012 mm. Calculate the modulus of elasticity and the Poisson’s ratio of
the material.

6. A specimen of diameter 13 mm and gauge length 50 mm was tested under tension. At 20 kN load, the
extension was observed to be 0.0315 mm. Yielding occurred at a load of 35 kN and the ultimate load was
60 KN. The final gauge length at fracture was 70 mm. Calculate young’s modulus, yield stress, ultimate
strength and percentage elongation.
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Assignment Questions

1. Determine the young’s modulus and Possion’s ratio of a metallic bar of length 25c¢cm breadth 3cm depth 2cm
when the beam is subjected to an axial compressive load 240KN. The decrease in length is given by 0.05¢cm and
increase in breadth 0.002

2. Write the differences among Gradual, Sudden, Impact and Shock loadings with the help of expressions

3. A steel rod and two copper rods together support a load of 370 kN as shown in fig. The cross sectional area of
steel road is 2500 mm? and of each copper road is 1600 mm?. Find the stresses in the roads. Take E for steel is
2x10° N/mm? and for copper is 1x10° N/mm?

4. A vertical tie, fixed rigidly at the top end consist of a steel rod 2.5 m long and 20 mm diameter encased
throughout in a brass tube 20 mm internal diameter and 30 mm external diameter. The rod and the casing are
fixed together at both ends. The compound rod is loaded in tension by a force of 10 kN. Calculate the maximum
stress in steel and brass. Take E=2x10°N/mm? and Ey=1x10°N/mm?

5. A steel tube 50mm in external diamerter and 3mm thick encloses centrally a solid copper bar of 35mm
diameter. The bar and the tube are rigidly connected together at the ends at a temperature of 20 °C. Find the stress
in each metal when heated to 170°C. Also find the increase in length, if the original length of the assembly is
350mm. Take 0,=1.08 x 10~ per °C and a.=1.7 x 10 ° per °C . Take Es =2X10°> N/mm? , E. =1X10°> N/mm?
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UNIT 2

SHEAR FORCE & BENDING
MOMENT DIAGRAMS




Course Objectives:

e To plot the variation of shear force and bending moments over the beams under different types
of loads.

Course Outcomes:

e Draw the shear force and bending moment diagrams for the beam subjected to different
loading conditions.



UNITII
SHEAR FORCE AND BENDING MOMENT DIAGRAMS

Shear force

The algebraic sum of the vertical forces at any section of a beam to the right or left of the section is
known as shear force

Bending moment

The algebraic sum of the moments of all the forces acting to the right or left of the section is known as
beading moment

Shear force and bending moment diagrams

A shear force diagram is one which shows the variation of the shear force along the length of the,
beam. And a bending moment diagram is one which shows the variation of the bending moment along
the length of the beam.

Important points for Shear force and bending moment

1.Shear Force (V) = equal in magnitude but opposite in direction to the algebraic sum (resultant) of
the components in the direction perpendicular to the axis of the beam of all external loads and support
reactions acting on either side of the section being considered.

2. Bending Moment (M) equal in magnitude but opposite in direction to the algebraic sum of the
moments about (the centroid of the cross section of the beam) the section of all external loads and
support reactions acting on either side of the section being considered.

Notation and sign convention
1. Shear force (V)
Positive Shear Force

A shearing force having a downward direction to the right hand side of a section or upwards to the left
hand of the section will be taken as ‘positive’. It is the usual sign conventions to be followed for the
shear force. In some book followed totally opposite sign convention.

E

The upward direction shearing force which is on the left hand of the section XX is positive shear
force

&
2 gidg

g i
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The downward direction shearing force which is on the right hand of the section XX is positive
shear force.

Negative Shear Force

A shearing force having an upward direction to the right hand side of a section or downwards to the
left hand of the section will be taken as ‘negative’.

P

- ==X

X P
The downward direction shearing force which is on the left hand of the section XX is negative shear

force.

The upward direction shearing force which is on the right hand of the section XX is negative shear
force.

Bending Moment (M)

Positive Bending Moment

A bending moment causing concavity upwards will be taken as ‘positive’ and called as sagging
bending moment.

X

+M v ' k\+M
/ 1 3
\¢§ : / +M t::ﬁ +M
\ ﬁ 1 E f
% ' /.','
\ 1
B : v Sagging
X

e Ifthe bending moment of the left hand of the section XX is clockwise then it is a positive
bending moment.

e Ifthe bending moment of the right hand of the section XX is anti-clockwise then it is a
positive bending moment.

e A bending moment causing concavity upwards will be taken as ‘positive’ and called as
sagging bending moment

Negative Bending Moment

e
oy
I

4
df ¥l
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X

R Y w (D)

Hogging

e Ifthe bending moment of the left hand of the section XX is anti-clockwise then it is a
negative bending moment.

e Ifthe bending moment of the right hand of the section XX is clockwise then it is a
negative bending moment.

e Hogging
A bending moment causing convexity upwards will be taken as ‘negative’ and called
as hogging bending moment.

Relation between S.F (Vx), B.M. (Mx) & Load (w)

Ve -w (load)
dx

The value of the distributed load at any point in the beam is equal to the slope of the shear
force curve. (Note that the sign of this rule may change depending on the sign convention
used for the external distributed load).

—dM\ — qu 1
dx ‘

The value of the shear force at any point in the beam is equal to the slope of the bending
moment curve.

Procedure for drawing shear force and bending moment diagram
Construction of shear force diagram

e From the loading diagram of the beam constructed shear force diagram.

e First determine the reactions.

e Then the vertical components of forces and reactions are successively summed from
the left end of the beam to preserve the mathematical sign conventions adopted. The
shear at a section is simply equal to the sum of all the vertical forces to the left of the
section.

e The shear force curve is continuous unless there is a point force on the beam. The
curve then “jumps” by the magnitude of the point force (+ for upward force).

e When the successive summation process is used, the shear force diagram should end
up with the previously calculated shear (reaction at right end of the beam). No shear
force acts through the beam just beyond the last vertical force or reaction. If the shear

il
v

1798

¥
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force diagram closes in this fashion, then it gives an important check on mathematical
calculations. i.e. The shear force will be zero at each end of the beam unless a point
force is applied at the end.

Construction of bending moment diagram

e The bending moment diagram is obtained by proceeding continuously along the
length of beam from the left hand end and summing up the areas of shear force
diagrams using proper sign convention.

o The process of obtaining the moment diagram from the shear force diagram by
summation is exactly the same as that for drawing shear force diagram from load
diagram.

e The bending moment curve is continuous unless there is a point moment on the
beam. The curve then “jumps” by the magnitude of the point moment (+ for CW
moment).

e We know that a constant shear force produces a uniform change in the bending
moment, resulting in straight line in the moment diagram. If no shear force exists
along a certain portion of a beam, then it indicates that there is no change in moment
takes place. We also know that dM/dx= Vx therefore, from the fundamental theorem
of calculus the maximum or minimum moment occurs where the shear is zero.

e The bending moment will be zero at each free or pinned end of the beam. Ifthe end
is built in, the moment computed by the summation must be equal to the one
calculated initially for the reaction.

A Cantilever beam with a concentrated load ‘P’ at its free end
Shear force:
At a section a distance x from free end consider the forces to the left, then
(Vx) = - P (for all values of x) negative in sign
i.e. the shear force to the left of the x-section are in downward direction and therefore
negative.
Bending Moment:

’_Il
" ¥
r
!
B il
A

o — - 1 =
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Bending Moment
Taking moments about the section gives (obviously to the left of the section)
Mx = -P.x

(negative sign means that the moment on the left hand side of the portion is in the
anticlockwise direction and is therefore taken as negative according to the sign
convention)
so that the maximum bending moment occurs at the fixed end i.e.

Mmax =-PL(atx=1L)

A Cantilever beam with uniformly distributed load over the whole length

When a cantilever beam is subjected to a uniformly distributed load whose intensity
is given w /unit length.
Shear force:
Consider any cross-section XX which is at a distance of x from the free end. If we
just take the resultant of all the forces on the left of the X-section, then
Vx=-wx forall values of ‘x'".
Atx=0, Vx=0
Atx =L, Vx=-wL (i.e. Maximum at fixed end)
Plotting the equation Vx = -w.x, we get a straight line because it is a equation of a
straight line y
(Vx) =m(- w) .x
Bending Moment:
Bending Moment at XX is obtained by treating the load to the left of XX as a
concentrated load of the same value (w.x) acting through the centre of gravity at x/2.
Therefore, the bending moment at any cross-section XX is

y=——= wiunit length

4
X Wy : = X
Mf(‘W-X}-T‘T —— L ———F
Ix
Therefore the variation of bending moment is according toparabolic law.
The extreme values of B.M would he
atx=0 M=0 X
W’ -
mix=Ll M= - e
2 /
2
" wl
Maximum bending moment, ma -~ at fixed end »X
wi*
a i
B.N 2

B.M Diagram

S.F and B.M diagram

."“!'\."-“. 5
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.'1'. I}
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A Cantilever beam loaded as shown below draw its S.F and B.M diagram

In the regionl0<x<a
Following the same rule as followed previously. we get
V=-P; andM =-P.x

In the regiona<x<L

V,=-P+P=0; and M,=-Px+P(x-a)=Pa

V ‘ 1
P10 Y, *X
M 4 S. .Piagram |

X

/A Pa
B.M Diagram ¥

S.F and B.M diagram

Example 1: A cantilever bean of 5 m length. It carries a uniformly distributed load 3

KN/m and a concentrated load of 7 kN at the free end and 10 kN at 3 meters from the
fixed end.

.;._.F:“-":
o a3
215
21 i

T
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ke,

o e I

3 kN/m

7kN 10kN

l; y
=2 m-| ‘
= 5m -

Draw SF and BM diagram.

Answer:In the region0 <x<2m

Consider any cross section XX at a distance x from free end.

Shear force (Vi) = -7- 3x

So. the variation of shear force is linear.
at x=0. Vz=-TkN

at x=2m.Vz=-7-3x2=-13kN
atpoint Z Vz=-7-3x2-10=-23 Kn

. X
Bending moment (My) = -Tx - (3x). 5 = 5 7x

So. the variation of bending force 1s parabolic.

atx=0. M:=0

2
atx=2m. Mz=-Tx2-(3x2) XEZ-ZOkNm

Intheregion2m<x<5m

Consider any cross section YY at a distance x from free end

Shear forece (Vz) =-7-3x—-10=-17- 3x
So. the variation of shear foree iz linear.
atx=2m, Vi=-23 kN

atx=50m, Ve=- 32 kN

Bending moment (Mz) = - 7x — (3x) x( %} -10(x-2)

N

3

=—2x*-17x+20
2
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So. the variation of bending force is parabolic.

atx=2m, Mx=_%3"22—17 «2+20 =-20kNm

atx=5m, =-102.5 kNm
Y
10 kN 3 kN/m
7 kN{
= X
\'A '
»X
-7kN| /
10 kNI -32 kN
I
MXI S.F Diagram =
; »X

—ix' -17x=20
2

B.M Diagram

A Cantilever beam carrying uniformly varying load from zero at free end and
w/unit length at the fixed end

FAR
']li:i'a' i
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w/unit length

ey

L'!'—L —_—

Consider any cross-section XX which is at a distance of x from the free end.

W
At this point load (w=) = t.}(

L L
Therefore total load (W) = led}( = Iﬂ_xd){ = W—L
- o L 2
Shear force (V, | = area of ABC (load triangle)
1w ) w2
SR C
LS S 2L

. The shear force varation is parabolic.
atx=0,V_=0

WL .

atx=L,W, S i.e. Maximum Shear force (V,__ )=— L at fixed end

Bending moment (M_ ) = load -~ distance from centroid of triangle ABC
wx® [ ox ) W
= |§ | - Bl
. The bending moment varation is cubic.
at x= 0, M, =0

2
at x = L, AW | i e, Maximum Bending moment (M__ )= ?at fixed end._

v X
h w/unit length
.
X

Parabolic

S_.F Diagram

| = ‘

MXT - K 1 |
6L~ 1 ' > X
Tl

B.M Diagram

A Simply supported beam with a concentrated load ‘P’ at its mid span

J‘-‘M"ﬂ:q__
of S
2173,
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P
Considering equilibrium we get. R,= R, = E

Now conszider any cross-section XX which is at a distance of x from left end A and section YY at a

distance from left end A, as shown in figure below.
Shear force:In the region 0 < x < L/2
Vz=Ra=+P/2 (it is constant)

In the region L2 <x <L

’ P -
V:=Ra—-P :E -P=-P/2 (it is constant)
Bending moment: In the region 0 <« x < L/2

X (its variation iz linear)

Mz =

o

atx=0, M:=0 and atx:LI’ZZMI:? ie maximum
Pl
4

Maximum bending moment, Mmax at x = L/2 (at mid-point)

In the region /2 <x <L

=]
Mz:=—x-Pix-L2y=———.x (its variation is linear)

2

PL
atxZUE.:sz? and atx=L,  Mz==0

X
Yi P ¥
e—i / 2
A _.1 B =X
Ra =
. I
'.—' ¥ |
L |
V1 il
g |
|

PI2 ////////

X
P12

M. S.F Diagram
PL
7772277 7
B.M Diagram =

A Simply supported beam with a concentrated load ‘P’ is not at its mid span

s i'.«?: I
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| L -

I
Pb _Pa
Considering equilibrium we get, Ra= T and RH T

Now consider any cross-section XX which is at a distance x from left end A and another section YY at
a distance x from end A as shown in figure below.
Shear force: In the range 0 <x<a

Pb

V==Ra= +T (it 1s constant)

Inthe rangea<x <L

Pa
Vi=Ra-P=-— (it is constant)

L

Bending moment: In the range l =x = a
Pb v L
M.=+Rax= T x (it 1= variation 15 hnear)

Pab ; 3
Atx=0 M.,=0 and amx=-a M,=—— {1l MAXIMUNm)

L

Inthe rangea<=x =L

Phb
M.=Rax -P(z- a]=T.x—P:x +Pa (Put b=L-a)

[

i

iz L
i 5.F Diagram
Mx ag
757 7 Wi
AR ey L

B.M Diagram

L
b
5iTge
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A Simply supported beam with a uniformly distributed load (UDL) through
out its length

wiunitlength

Ly -
! L ~
We will solve this problem by following two alternative ways.
(a) Bv Method of Section

Considering eguilibrium we get Ra = Rp = ?

Now Consider any cross-section XX which is at a distance x from left end A

Then the section view X
|

AT"I“LMI l,') M,
wil I

E3 X1V
_wlL Yy
Shear force: Vx= ?—WX !X wiunitlength
(i.e. S.F. variation is linear) A 2 B X
wiL
wlL R,|=— _wL
at x=0, Vx=—2— A-—2—~—Jx RB_?
at x=L/2, Vx=0 - -
at x=L, Vx=-&
2
2 o
Bending moment: M = %.X . } _wL X
2 2 S.F Diagram >
(i.e. BM. iation i boli t
le variation is parabolic) Mx £
at x=0, Mx=0 2
)
at x=L M:=0
wi3
Now we have to determine maximum bending "?
moment and its position. ] »X
B.M Diagram
d(M d(m,) |
For maximum B.M: (—‘) =0 ie V, =0 M,) =V, |
dx dx
o wx=0 or x =
or_ _— — p—p—
2 2

A%
9 g7

e
o
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2
wil
Thereforemaximum bending moment, Mmax — ——atx=1L/2

8

(a) By Method of Integration

Shear force:

d(Vv,)
We know that, —— = —¥
dx
or d(V,)=—wdx
. . wil
Integrating both side we get (at x =0, Vx Z?}
W, x
[ d(v,)=—]wadx
L o
2
or V, — W = —Wx
2
or V= L Wx
2
Bending moment:
d(M, )
We know that, ———— =V
ax
[ Wil
or d[ﬂf:fx}zvde(:i?—wxjdx

Integrating both side we get (at x =0, Vz =0)

M, X g Y
Id;haﬁ‘”:j ﬂ—wx | cix
L2 /
o a ™
2
or N =W—L_x— k]
=] 2 2

Example 2 :A loaded beam as shown below. Draw its S.F and B.M diagram

3000N
200MN/m r

ol bkl

R.ﬂ.-u:— am e 4m Ry

Considering equilibrium we get

2_M_ =0 gives

-(200%4)=<2-3000=4+R, x8=0
or Rg=1700N

And R, +Rg =200 x4 + 3000
or R, =2100N

Now consider any cross-section XX which is at a distance "X’ from left end A and
as shown in figure

i
et
i 5y I
58 g¢
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14g¢

Y X |3000N
200N/m__ y

RERY

— b — —— -

B | &

=— A4M —s=—=—4m =
— X =Y

In the region 0 < x<4m

Shear force (V) = Ra— 200x = 2100 -200x

Bending moment (Mx) = Ra x— 200 x j 32<— =2100 x -100 x2

at x=0, Vz= 2100 N, M==10
at x=4m., Vz=1300N, Mz =6800 N.m
In the region 4 m<x <8 m

Shear force (V=) = Ra - 200 = 4 — 3000 =-1700

Bending moment (Mx) = REa x - 200 = 4 (x-2) — 3000 (x- 4)

=2100x— 800 x + 1600 — 3000x +12000 = 13600 -1700 x

atx=4m. V< =-1700 N, M = 6300 Nm
at x=8m, V==-1700 N, M:.=0
Y, X |3000N
OON/m! i
. :
A : —B =X
x—= :

=— AIM —>=—4m +—=

X =Y
VX

2100 N 1300 N
> X
-1700 N -1700 N

S.F Diagram
F’arapo,i\(/:| 6800 Nm
> X

B.M Diagram
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Shear force and bending moment diagrams for over-hanging beams

If the end portion of a beam is extended beyond the support, such beam is known as
overhanging beam. In case of overhanging beams, the B.M. is positive between the two sup-
ports, whereas the S.M. is negative for the over-hanging portion. Hence at some point, the
B.M. is zero after changing its sign from positive to negative or vice-versa. That point is
known as the point of Contraflexure or point of inflexion

Point of Contraflexure:

It is the point where the B.M. is zero after changing its sign from positive to negative or vice-
versa.

Overhanging Beam Subjected to a Concentrated Load at Free End

Draw shear force and bending moment diagram for the cantilever beam shown in Fig.

" 20 kN 40 kN
/ 20 KN/m
A i 1im B, 2m EC
N
{8) Load Diagram
Solution: Portion AB:
At distance x, from A,
F = =20 =20 x. linear variation.
At x=0, F,=-20kN

At x=1 Fp=-20-20x1=—40kN.

x
M = 20x —20x - 2 parabolic variation
At x = 0, M,-i =0

At X = — 30 kN-m.

Portion BC:
Measuring x from A,

1m My=-20-20x1x

[\Jl—m.

F = -20 — 40 — 20x. linear variation.
At x=1m, Fp=-80kN
At x=3m, F-=-120 kN.

s
M = -20x <40(x — 1) -20x. bk parabolic variation:

At x=1m M=-30 kN-m
3
At X =3 100 M:—{SD—-'JDXE—QDXSXE
= =230 kN-m

s
el
¥ s
S

.

Do

41
e
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Hence SFD and BMD are shown in Fig. 9.37(b) and 9.37(c) respectively.

20 kN 40 kN
l { 20 kN/m
r 3
Al im B 2m ko
X

(a) Load Diagram

120

Statically determinate & Statically Indeterminate beams

Beams for which reaction forces and internal forces cannot be found out from static equilibrium
equations alone are called statically indeterminate beam. This type of beam requires deformation
equation in addition to static equilibrium equations to solve for unknown forces.

Statically determinate - Equilibrium conditions sufficient to compute reactions.
Statically indeterminate - Deflections (Compatibility conditions) along with equilibrium equations

should be used to find out reactions.

s i'.«?: I
L F
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Tutorial Questions

1. A cantilever of length 2.0 m carries a uniformly distributed load of 1 kN/m run over a length
of 1.5 m from the free end. Draw the shear force and bending moment diagrams for the
cantilever.

2. An overhanging beam ABC of length 7 m is simply supported at A and B over a span of 5 m
and portion BC overhangs by 2 m. Draw the shearing force and bending moment diagrams
abd determine the point of contra-flexure if it is subjected to uniformly distributed loads of 3
KN/m over the portion AB and a concentrated load of 8 kN at C.

3. Abeam of span 10m is simply supported at two points 6m apart with equal over-hang on

either side. Both the overhanging portions are loaded with a uniformly

distributed load of 2 kN/m run and the beam also carries a concentrated load of

10 N at the midspan. Construct the SF and BM diagrams and locate the points

of inflexion, if any.

Sketch the shear force and bending moment diagrams showing the salient values for the
loaded beam shown in the figure below.

> =g 2 = N

&

. / “

CEEEEE— - . \ Y ¥ ‘.'_I' e
I . N
Z > ~ [
- ) 5T P - i >

5. A Simply supported beam of span,9 m hL of 15 KN/m over 4 m from the left support and a
concentrated load of 20KN at the center. Draw SF and BM diagrams

6. A Beam of length 12m is supported at left end and the other support is at a distance of 8m
from the left support leaving a overhanging length of 4m on the right side.It carries a UDL of
10 KN/m over the entire length and a concentrated load of 8 KN at the right extreme end.
Draw the shear force and bending moment diagrams and find the position of Contra flexure
point

7. Drawthe B. M. D and S. F.D

40KN 40KN
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Assignment Questions

1. A cantilever beam of 2 m long carries a uniformly distributed load of 1.5kN/m over a
length of 1.6 m from the free end. Draw shear force and bending moment diagrams for
the beam

2. A simply supported beam 6 m long is carrying a uniformly distributed load of SkN/m over
a length of 3 m from the right end. Draw shear force and bending moment diagrams for
the beam and also calculate the maximum bending moment on the beam

3. A simply supported beam of 16m long carries the point loads of 4KN, SKN and 3KNat
distances 3m, 7m and 10m respectively from the left support. Calculate the maximum
shear force
and bending moment. Draw the SFD and BMD.

4. A horizontal beam of 10m long is carrying a uniformly distributed load of 1kN/m. The
beam is supported on two supports 6m apart. Find the position of supports, so that
bending moment on the beam is small as possible. Also draw the SFD & BMD for the
beam

5. A beam of length | carries a uniformly distributed load of w per unit length. The beam is
supported on two supports at equal distances from the two ends. Determine the position
of the supports, if the B.M, to which the beam is subjected to , is as small as possible.
Draw the SFD & BMD for the beam.

6. A simply supported beam of length 10m, carries the uniformly distributed load and two
point loads as shown in Fig.(2) Draw the S.F and B.M diagram for the beam and also
calculate the Maximum bending moment

SOKN 10 kvm 40 kN
A cL,\,\,{ﬁ,‘,\,,,.J,D 8

4— 2 m ~P—————aqm R 4m —»
. 10m
Fig.(2)
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UNIT 3
FLEXURAL & SHEAR STRESSES




Course Objectives:

e To understand the behavior of beams subjected to shear loads.

Course Outcomes:

e [Evaluate stresses induced in different cross-sectional members subjected to shear loads.



UNIT III

Stresses in Beams

As seen in the last chapter beams are subjected to bending moment and shear forces which vary from
section to section. To resist them stresses will develop in the materials of the beam. For the simplicity
in analysis, we consider the stresses due to bending and stresses due to shear separately.

Under compression

r— Neutral
axis

Under tension

(a) Sagging moment case

Under
tension

F_ Neutral
------- axis

compression

(b) Hogging moment case

Fig. 1. Nature of Stresses in Beams

Due to pure bending, beams sag or hog depending upon the nature of bending moment as shown
in Fig. 10.1. It can be easily observed that when beams sag, fibres in the bottom side get stretched
while fibres on the top side are compressed. In other words, the material of the beam is subjected
to tensile stresses in the bottom side and to compressive stresses in the upper side. In case of hogging
the nature of bending stress is exactly opposite, i.e., tension at top and compression at bottom. Thus
bending stress varies from compression at one edge to tension at the other edge. Hence somewhere
in between the two edges the bending stress should be zero. The layer of zero stress due to bending
is called neutral layer and the trace of neutral layer in the cross-section is called neutral axis [Refer
Fig. 1].

ASSUMPTIONS

Theory of simple bending is developed with the following assumptions which are reasonably acceptable:
(i) The material is homogeneous and isotropic.

(ii) Modulus of elasticity is the same in tension and in compression.
(iii) Stresses are within the elastic limit.
(iv) Plane section remains plane even after deformations.
(v) The beam is initially straight and every layer of it is free to expand or contract.

(vi) The radius of curvature of bent beam is very large compared to depth of the beam.
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BENDING EQUATION
There exists a define relationship among applied moment, bending stresses and bending deformation
(radius of curvature). This relationship can be derived in two steps:
(i) Relationship between bending stresses and radius of curvature.
(if) Relationship between applied bending moment and radius of curvature.

(i) Relationship between bending stresses and radius of curvature: Consider an elemental length
AB of the beam as shown in Fig. 2(a). Let EF be the neutral layer and CD the bottom
most layer. If GH is a layer at distance y from neutral layer EF, initially AB = EF = GH =
CD.

Fig. 2

Let after bending A, B, C, D, E, F, G and H take positions A”, B’, C’, D', E’, F', G’ and H’
respectively as shown in Fig. 2(b). Let R be the radius of curvature and ¢ be the angle subtended by C’
A’ and D’B’ at centre of radius of curvature. Then,

EF = E'F’, since EF is neutral axis
= R (D)
Final length — Initial length
Initial length

Strain in GH =

G'H - GH
GH
EF (The initial length)
= RO
and GH =R +y) 0
_ (R+)0-R0
Ro

But GH

Strain in layer GH

== ..(ii)

Since strain in GH is due to tensile forces, strain in GH = f/E N (17))]
where f is tensile stress and E is modulus of elasticity.
From eqns. (ii) and (iii), we get

Sy

E R
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S_E
or y R ..(1)
(ii) Relationship between bending moment and radius of curvature: Consider an elemental area

da at distance y from neutral axis as shown in Fig. 3.

From eqn. 1, stress on this element is
E .
= — ¢
f z’ @)
Force on this element
E
= — yda
R y

Moment of resistance of this elemental force about neutral axis

yday

y? 8a

S| =W

Total moment resisted by the section M’ is given by

M = 2 %yz&l

= %2 y25a

From the definition of moment of inertia (second moment of area) about centroidal axis, we

know
I =3y da
M = E 1
R
From equilibrium condition, M = M’ where M is applied moment.
M = E 1
R
M _E
or TR ..(2)
From eqns. (10.1) and (10.2), we get
M f E
T ; "R ..(3)

r
A =5
21"
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where M = bending moment at the section
I = moment of inertia about centroid axis
f =bending stress
y = distance of the fibre from neutral axis
E = modulus of elasticity and
R = radius of curvature of bent section.
Equation (3) is known as bending equation.

LOCATING NEUTRAL AXIS

Consider an elemental area da at a distance y from neutral axis [Ref. Fig. 3].
If ‘f* is the stress on it, force on it = f da

E
But f= Ey, from eqn. (1).

E
Force on the element = z y da

Hence total horizontal force on the beam

= z %yﬁa

E
= —X 661
R y
Since there is no other horizontal force, equilibrium condition of horizontal forces gives
E
—Zyda =0
R y
As E iS not zero,
R
Syda =0 ..(D)
If A is total area of cross-section, from eqn. (i), we get
vy da ..
— =0 (i
2 (i)

Noting that Xyda is the moment of area about neutral axis, should be the distance of

centroid of the area from the neutral axis. Hence = 0 means the neutral axis coincides with

the centroid of the cross-section.
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MOMENT CARRYING CAPACITY OF A SECTION From

bending equation, we have

M
1

~|§ < |~

ie., f="y @)

Hence bending stress is maximum, when y is maximum. In other words, maximum stress occurs
in the extreme fibres. Denoting extreme fibre distance from neutral fibre as y, . equation (i) will be

M

fmax = T ymax (ll)

In a design f,,,, is restricted to the permissible stress in the material. If f, is the permissible
stress, then from equation (if),

M
fper = 7 Ymax
1
M=— fper
Ymax

The moment of inertia / and extreme fibre distance from neutral axis y,,,, are the properties of

section. Hence

is the property of the section of the beam. This term is known as modulus of

ymax
section and is denoted by Z. Thus
7= 1 (4
ymax
and M=fZ ...(5)

Note : If moment of inertia has unit mm* and Ymax 1188 mm, Z has the unit mm>.

The eqn. (5) gives permissible maximum moment on the section and is known as moment
carrying capacity of the section. Since there is definite relation between bending moment and the
loading given for a beam it is possible to find the load carrying capacity of the beam by equating
maximum moment in the beam to moment carrying capacity of the section. Thus

Mo = foer Z ..(6)

If permissible stresses in tension and compressions are different for a material, moment carrying
capacity in tension and compression should be found separately and equated to maximum values of
moment creating tension and compression separately to find the load carrying capacity. The lower
of the two values obtained should be reported as the load carrying capacity.

SECTION MODULI OF STANDARD SECTIONS

Section modulus expressions for some of the standard sections are presented below:
(i) Rectangular section: Let width be ‘b’ and depth be ‘d’ as shown in Fig. 4.

Since N-A is in the mid depth fe—b—

Vmax = dr2 A T

I = i de yl o

12
: Il o

7 = L_l/led* N-Y- | S ¥ A

Yoo dI2 T

ie., Z = 1/6 bd> ..(10.7) ji

Fig. 4

3 i
SE™g¢
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(ii) Hollow rectangular section. Figure 5 shows a typical
hollow rectangular section with symmetric opening. For Y
this, Ymax —D q D/2
BD®  bd® 1 ; 3 d
1= ~——=—(BD’ - bd G
12 12 12 ( ) L ST AA
Vmax = DI2
3 3 D/2
7= I 1 (BD -bd") Y
oy 12 DI2
3 _pd3 Fig. 5
ie. z = 1BD"~bd” (108 ¢
6 D

(iii) Circular section of diameter ‘d’. Typical section is shown in Fig. 6. For this,

T
I= 64 d max_fd/z
Ymax = dI2 N By SEEEES EECEEE A
S 1 _med d’
- d/2

ymax

ie., 7 = 1d3
32

(iv) Hollow circular tube of uniform section. Referring to Fig. 7,

1= Epto g T
64 64 Ymax
"

)

T -= D

=— '-d
o ( ) A

Vmax = DI2

_ 1 _n-d

Y. 64 DI2 Fig. 7
n D*-d*

ie., = ET ...(9)

(v) Triangular section of base width » and height ‘h’. Referring to Fig. 8,

o
36

Y

3
7 = I _Dbh /36
2/3h

y max

” bh?
Le., = —
24

..10)

Fig. 8

Example 1. A simply supported beam of span 3.0 m has a cross-section 120 mm x 180 mm. If
the permissible stress in the material of the beam is 10 N/mm?®, determine
(i) maximum udl it can carry
(ii) maximum concentrated load at a point 1 m from support it can carry.
Neglect moment due to self weight.
2gl
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Solution:

1 d
Here b = 120 mm, d = 180 mm, 1= 12 bd39 ymax = 2
1, 5
Z = bd
6
= éleOx 180% = 648000 mm>

frer = 10 N/mm’

Moment carrying capacity of the section
= X Z

— Jper

2

In this case, we know that maximum moment occurs at mid span and is equal to M, = Wé‘ .
Equating it to moment carryiélgl 8&&218%/0 (%el\%?}im .
(i) Let maximn;rﬁzud>l< ble(ggn: CTB cxar& ?&Oglmetre length as shown ig Fig. 9.

y

w = 5.76 kN/m.

ad 3 »

(ii) Concentrated load at distance 1 m from the sup- m
port be P kN. Referring to Fig. 10. Fig. 9

B Pxaxb Px1x2

2P
= — kN-m 4
3 <—a=1m—>|<7b=2 m——b
<4 =83 Mm— >
= 2—P><106 N-mm L=3m
3 Fig. 10

Equating it to moment carrying capacity, we get

2P
T><106 = 10 x 648000

P = 9.72 kN-m.

Example 2. A circular steel pipe of external diameter 60 mm and thickness 8 mm is used as a

simply supported beam over an effective span of 2 m. If permissible stress in steel is 150 N/mm?,
determine the maximum concentrated load that can be carried by it at mid span.

Solution:
External diameter D = 60 mm
Thickness = 8 mm

P=?
60 mm l
< 2m >
(a) (b)
Fig. 11
Internal diameter =60 -2 x 8 =44 mm.

I= g (60" - 44% = 452188 mm*

i
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Ymax = 30 mm.
7= L _ 452188 15073 mm®.
Vimax 30

Moment carrying capacity
M = for Z =150 x 15073 N-mm.

Let maximum load it can carry be P kN.

. PL
Then maximum moment = 4

_ Px?2 KN-m
4

0.5 P x10° N-mm.

Equating maximum bending moment to moment carrying capacity, we get
0.5P x 10° = 150 x 15073
P = 4.52 kN.

Example 3: Figure 12 (a) shows the cross-section of a cantilever beam of 2.5 m span. Material used

is steel for which maximum permissible stress is 150 N/mm®. What is the maximum uniformly

distributed load this beam can carry?
Solution: Since it is a symmetric section, centroid is at mid depth.

I = MI of 3 rectangles about centroid

|¢——180 mm——»{ 10 mm
: —/

1=/ &

—> [ — 400 mm
N—10 mm
w/m="?

1

- Ll

— < 2m »

[ I:\ v |
10 mm

(a) (b)

Fig. 12

1
E><180><103 + 180 x 10 (200 — 5)°
1
+ E><10><(400—20)3 + 10 x (400 - 20) x 0°

1
+ o X 180 x 10° + 180 x 10 (200 — 5)*
182.6467 x 10° mm*

[Note: Moment of above section may be calculated as difference between MI of rectangle of size 180 x 400
and 170 x 380. i.e.,

1 1
I=— x1 400° = — x 170 x 380°
T 80 x 400 5

Vimax = 200 mm.

I 1826467 x10°
- 200

7= = 913233 mm’.

ymax
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Moment carrying capacity
= fper X Z
180 x 913233
136985000 N-mm.
If udl is w kN/m, maximum moment in cantilever
= wL = 2w kKN-mm
= 2w x 10° N-mm
Equating maximum moment to movement carrying capacity of the section, we get
2w x 10° = 136985000
w = 68.49 kN/m

Example 4. Compare the moment carrying capacity of the section given in example 10.3 with
equivalent section of the same area but

(i) square section
(i) rectangular section with depth twice the width and
(iit) a circular section.
Solution:
180 x 10 + 380 x 10 + 180 x 10
7400 mm®

Area of the section

(i) Square section

If ‘a’ is the size of the equivalent square section,
a* = 7400 5 a = 86.023 mm.
Moment of inertia of this section

1
= — x 86.023 x 86.023°

12
= 4563333 mm*
go L _A033 0056 mm’
Vo 86.023/2

Moment carrying capacity = fZ = 150 x 106095.6
= 15.914 x 10° N-mm

Moment carrying capacity of I section 136985000

Moment carrying capacity of equivalent square section = 15914 x10°

= 8.607.
(i) Equivalent rectangular section of depth twice the width.
Let b be the width
Depth d = 2b.
Equating its area to area of I-section, we get
b x 2b = 7400
b = 60.8276 mm
Ymax = dI2 = b = 60.8276
I _sgy L, bx@b)

50 x — x
12 b

M=f

ymax

8
150 x — b3 = 150 x - x 60.8276°
12 12

22506193 N-mm.

Moment carrying capacity of I section _ 136985000

= = 6.086.
Moment carrying capacity of this section 22506193

"‘19":'-'. -
S0
L e
279¢
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(iii) Equivalent circular section.

Let diameter be d.

nd?
Then, = 7400
4
d = 97.067
T
1=, d
Ymax = dI2
7- L _Tp
Vmax 32

M= fon Z = 150 x 3“2 x 97.067° = 13468024

Moment carrying capacity of I section 136985000 1017
Moment carrying capacity of circular section 13468024 o

[Note. I section of same area resists more bending moment compared to an equivalent square, rectangular or
circular section. Reason is obvious because in /-section most of the area of material is in heavily stressed zone.]

Example 15. A symmetric I-section of size 180 mm x 40 mm, 8 mm thick is strengthened with 240
mm X 10 mm rectangular plate on top flange as shown is Fig. 13. If permissible stress in the
material is 150 N/mm®, determine how much concentrated load the beam of this section can carry
at centre of 4 m span. Given ends of beam are simply supported.

Solution: Area of section A
=240 x 10 + 180 x 8 + 384 x 8 + 180 x 8 = 8352 mm’

|<—240 mm—>|

[ ] ——10mm
[ | A

8 mm thick
400 mm
[ ] ¥
f¢—— 180 mm —»]
Fig. 13

Let centroid of the section be at a distance y from the bottom most fibre. Then
Ay =240 x 10 x 405 + 180 x 8 x (400 — 4) + 384 x 8 x 200 + 180 x 8 x 4

ie., 8352 y = 2162400
y = 2589 mm

1
I= 35 %240 x 10* + 240 x 10 (405 — 258.9)>
1
+ 3% 180 83 + 180 x 8 (396 — 258.9)*
1 3 2
+ 75 % 8% 384% + 8 x 384 (200 - 258.9)

1
+ E><180><83 + 180 x 8 (4 — 258.9)2

dre,
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= 220.994 x 10° mm*
Yiop = 405 — 258.9 = 146.1 mm
Ybottom = 298.9 mm.
Ymax = 258.9 mm
I 220994x10°

Z = 2589 = 853588.3

y max

Moment carrying capacity of the section
= Joer £ = 150 x 853588.3
= 128038238.7 N-mm
= 128.038 kN-m.
Let P kN be the central concentrated load the simply supported beam can carry. Then max
bending movement in the beam

Px4
= = P kN-m
4
Equating maximum moment to moment carrying capacity, we get

P = 128.038 kN.

Example 6. The cross-section of a cast iron beam is as shown in Fig. 14(a). The top flange is in
compression and bottom flange is in tension. Permissible stress in tension is 30 N/mm? and its value
in compression is 90 N/mm?. What is the maximum uniformly distributed load the beam can carry
over a simply supported span of 5 m?

Solution:
Cross-section area A =75 x50+ 25 x 100 + 150 x 50
= 13750 mm’
Let neutral axis lie at a distance y from bottom most fibre. Then

Ay =75 % 50 x 175 + 25 x 100 x 100 + 150 x 50 x 25
13750 x y = 1093750
y = 79.54 mm

|<—75 mm—>| f

)
o)
3
3

el

]

B i |
I gy
4
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L

5 X5 x 50° + 75 x 50 (175 — 79.54)°

I =

1
+ o X 25 x 100° + 25 x 100 (100 — 79.54)

+ % x 150 x 50° + 150 x 50 (25 — 79.54)*
= 61.955493 x 10° mm*.
Extreme fibre distances are
Ybottom = ¥ = 79.54 mm.
Yiop = 200 — y =200 - 79.54 = 120.46 mm.
Top fibres are in compression. Hence from consideration of compression strength, moment
carrying capacity of the beam is given by

1

M, = fper in compression X —
top
. 61955493 x10°
120.46
= 46.289178 x 10° N-mm
= 46.289178 kN-m.
Bottom fibres are in tension. Hence from consideration of tension, moment carrying capacity of
the section is given by

=90

1

M, = f, in tension x Voo
30 % 61955493 x 10°
79.54
= 21367674 x 10° N-mm
= 21.367674 kN-m.
Actual moment carrying capacity is the lower value of the above two values. Hence moment

carrying capacity of the section is
= 21.367674 kN-m.

Maximum moment in a simply supported beam subjected to udl of w/unit length and span L is

wiL?
8
Equating maximum moment to moment carrying capacity of the section, we get maximum load

carrying capacity of the beam as
52
w X ry = 21.367674

w = 6.838 kN/m.
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SHEAR STRESS DISTRIBUTION

Expression for Shear Stress

Consider an elemental length ‘dx” of beam shown in Fig. 15 (a). Let bending moment at section A-A be
M and that at section B-B be M + 0M. Let CD be an elemental fibre at distance y from neutral axis and
its thickness be &y. Then,

Bending stress on left side of elemental fibre

M
I y
M M + 8M
/A B X,
C ] D i&y
y
VA B /
X——————ple—— 5x—>]
(a) (b)
C D
R —
o E—
%yb dy -9 M+ M +ISM yb dy
—_—
—_—
—_—
[
C D
(c)
Fig. 15
The force on left side of element
M
= bd
It y Yy
Similarly, force on right side on elemental fibre
_ M+M v bdy

Unbalanced horizontal force on right side of elemental fibre

M
=M+5Myb6y— v bdy
1 I
oM
= b &
I yb oy
There are a number of such elemental fibres above CD. Hence unbalanced horizontal force on

section CD

217g¢
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y

= J~y, am ybdy= 8jlu-’.yylybdy

y
Let intensity of shearing stress on element CD be g. [Refer Fig. 15 (c¢)]. Then equating

resisting shearing force to unbalanced horizontal force, we get
M
qgbox= 3 vb dy
I
M 1 J'.v,
=—— | ybd
i ox bl yy Y
aMm 1
As ox = 0, = — — (ay
i dx bl @)

where ay = Moment of area above the section under consideration about neutral axis.

dM
But we know =F
dx
..(11)

F
= a
q=p; @y
The above expression gives shear stress at any fibre y distance above neutral axis.

Variation of Shear Stresses Across Standard Sections
Variation of shear stresses across the following three cases are discussed below:

(i) Rectangular

(if) Circular and

(ii7) Isosceles triangle.

(i) Rectangular section. Consider the rectangular section of width ‘6’ and depth shown in Fig.
10.18(a). Let A-A be the fibre at a distance y from neutral axis. Let the shear force on the

section be F.
_T_ Parabolic
a2 A A variation
! Ji
de qmax = 15 an

—b—f
(a) (b)
Fig. 16

From equation (11), shear stress at this section is
F _
q=— (ay)
bl
where (ay) is the moment of area above the section about the neutral axis. Now,

a = bd?2 - y)

elon
_" Fam

o

ZL-'fa
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y=y+l (d/2—y)=l dr +vy
2 2
a“—é(d/Z— )xl(d/2+ )
Y ) y 2 y
b 2
=— (d/4-
2 ( ¥)
1
I=— bd’
12
F
q=—7——5 M-y
b— bd’
12
6F
=7 (/4 - y?)
This shows shear stress varies parabolically.
When y ==+ d/2, q=0
6F d° F
At =0, =— — =15 —
Y I = b7 4 bd
= 1.5 q,

F .
where ¢g,, = ) is average shear stress.

Thus in rectangular section maximum shear stress is at neutral axis and it is 1.5 times average
shear stress. It varies parabolically from zero at extreme fibres to 1.5 ¢,, at mid depth as shown in

Fig. 16(b).

(ii) Circular section. Consider a circular section of diameter ‘d’ as shown in Fig. 17(a) on
which a shear force F is acting. Let A-A be the section at distance ‘y’ from neutral axis at
which shear stress is to be found. To find moment of area of the portion above A-A about
neutral axis, let us consider an element at distance ‘z” from neutral axis. Let its thickness be
dz. Let it be at an angular distance ¢ and A-A be at angular distance 0 as shown in figure.

l¢—b/2 —ple—b/2 —>|

T Parabolic
variation

d/2

£ »
T— Neutral O = 4/3 Gy

axis dr2

Fig. 17

i
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d

Width of element b= 2-5 cos ¢
=d cos ¢
d .
z= — sin
5 ¢
dz = g cos ¢ do

Area of the element
a=bdz=dcos¢-gcos¢d¢
2

= d? cos® ¢ do

Moment of this area about neutral axis

= area X Z

: d
2 .

= — cos8 dp = sin

7 cos 0 do % sin ¢

3
= — cos’ O sin ¢ do
Moment of area about section A-A about neutral axis

2 g2

(ay) = J. T cos’ ¢ sin ¢ do

6

d’ | —cos® ¢ "
) 4[3]

)
[Since if cos ¢ = ¢, df = — sin ¢ do and — £/3 is integration]

3 T
(ay) = |:— cos? 3 + cos® 9]

4x3

= i cos® 0
12

4
Now Izﬂ

64

F  _
q—ﬁ(ay)

3
= ;xd_ COS39

dcoseld4 12
64

:ﬁi cosZ 0
12 md?
16 F .
= — —— [1 — sin” 0]
3 nd?

2
_6 F o (L
3 nd? di2

16 F 4y?
=< ol
3 md d
-_Ié..'-:\."l"=-'1-%i__
LgHgl
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Hence shear stress varies parabolically.
At y==x4d/2, qg=0

y=0, 94 =Y9nmax = 7 — 7%

W

a

Q|
LSS}

4_F
3 n/4d?
i F

3 Area

4

= g Gav-

where ¢,, = average shear stress.
Thus in circular sections also shear stress varies parabolically from zero at extreme edges to the

maximum value of 4 q,, at mid depth as shown in Fig. 17(b).
3

(iii) Isosceles triangular section. Consider the isosceles triangular section of width ‘b’ and

height ‘4’ as shown in Fig. 18(a). Its centroid and hence neutral axis is at 2h from top
3

fibre. Now shear stress is to be found at section A-A which is at a depth ‘y’ from top fibre.

li 7 ih ll

——

Omax = 1.50,
Ge
h/3 centroid = 4/30ay
¥ v
|« b >
(a) (b)
Fig. 18
. ,_ Y

At A-A width b’ = Zb
Area above A-A a= % b’y

_1b >

Y
Its centroid from top fibre is at ﬂ

3

. . . _  2h 2y
Distance of shaded area above the section A-A from neutral axis y = 3 3
_ 1b ,(2h 2y)
YEan? (3 3
_ 1 é 2 (h )
“3n” Y
Moment of inertia of the section
3
=
f M 5. %
DY
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Shear stress at A-A

Hence at y =0, q=0
At y = h, q=0

At centroid, y = %

12 F 2h

S (= 2003)

4 F

b

8 F

3 bh 3 1/2bh
4

3

Gay

where ¢, is average shear stress.

For g, =0

dy

12F
bh’
ie., at y = h/2
12F h
and hence Gnax = YRRy
12F 3F
4bh bh

(h—2y)=0

(h — hi2)

15F

" 1/2bh

1.5 g,
Thus in isosceles triangular section shear stress is zero at extreme fibres, it is maximum of 1.5

. 4 . -~ . .
q,, at mid depth and has a value 3 q,, at neutral axis. The variation of shear stress is as shown in

Fig. 18().

£l ‘--_:;{_1

it
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SHEAR STRESSES IN BUILT-UP SECTIONS

In sections like 7, T and channel, shear stresses at various salient points are calculated and the shear
stress variation diagram across depth is plotted. It may be noted that at extreme fibres shear stress
is zero since (ay) term works out to be zero. However it may be noted that the procedure explained
below is for built up section with at least one symmetric axis. If there is no symmetric axis along
the depth analysis for shear stress is complex, and that is treated beyond the scope to this book.

Example 7. Draw the shear stress variation diagram for the I-section shown in Fig. 10.21(a) if it
is subjected to & shear force of 100 kN.

je———180 mm—»]
. y__ 19.217
10 mm
—> 400 mm 29.10
10 mm
10 mm
[ ¥ . A
A
f— —

(a) (b)
Fig. 19

Solution: Due to symmetry neutral axis is at mid depth.

1=% % 180 x 10° + 180 x 10 x (200 — 5)
1
t ;% 10 x 380% + 10 x 380 x (200 —200)°
+é x 180 x 10° + 180 x 10 x (200 — 5)*

= 182.646666 x 10° mm*
Shear stress at y = 200 mm is zero since ay = 0.

Shear stress at bottom of top flange

=E (ay)

100 % 1000

= X (180 x10x 195
180 x 182.646666 x 10° ( )

1.068 N/mm?>

Shear stress in the web at the junction with flange

~ 100 x 1000
T 10 x 182.646666 x 1

06 (180 x 10 x 195)

19.217 N/mm?

e,

Sl
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Shear stress at N-A

- Mx[lsox10x195+10x(200—10)x@]
10 X 182.646666 2
=29.10 N/mm>

Symmetric values will be there on lower side. Hence shear stress variation is as shown
in Fig. 19(b).

Example 8. A beam has cross-section as shown in Fig. 20(a). If the shear force acting on this
is 25 kN, draw the shear stress distribution diagram across the depth.

le——120 mm—»] ,
+ 2.9 N/mm
' ' 29 N/mm”
12 mm
"""""" T 31.17 N/mm’
—p{(— 120 mm
12 mm

Fig. 20

Solution: Let y be the distance of centroid of the section from its top fibre. Then

. Moment of area about top fibre

y = Total area

120><12x6+(120—12)x12x(12+%)

120 x12 + (120 —12) x 12
34.42 mm

Moment of inertia about centroid

I= % x 120 x 12 + 120 x 12 (34.42 — 6)*

2
+ % x 12 x 108 + 12 x 108 (34.42—%)

= 2936930 mm*
Shear stresses are zero at extreme fibres.
Shear stress at bottom of flange:
Area above this level, a =120 x 12 = 1440 mm?>
Centroid of this area above N-A
y =3442 — 6 = 2842 mm

Width at this level b = 120 mm.

25 %1000

aee = ———————— % 1440 x 28.42
Dvottom of flange 120 % 2936930

= 2.90 N/mm?

Shear stress at the same level but in web, where width » = 12 mm

_5..’-\."'1=.'_-\_..{
it i "E:-
SE™g¢
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_ _2x1000 440 x 28.42

12 x 2936930

29.0 N/mm?>

Shear stress at neutral axis:
For this we can consider ay term above this section or below this section. It is convenient to
consider the term below this level.
a =12 x (120 — 34.42) = 1026.96 mm’

The distance of its centroid from N-A

1203442
B 2

= 42.79 mm.

Width at this section b = 12 mm.

25 %1000

qg=————— % 1026.96 x 42.79
12 x 2936930

= 31.17 N/mm’

Hence variation of shear stress across the depth is as shown in Fig. 10.22(b).

Example 9. The unsymmetric I-section shown in Fig. 21(a) is the cross-section of a beam, which
is subjected to a shear force of 60 kN. Draw the shear stress variation diagram across the depth.

|¢——100 mm—>] _L

- 2,61 N/mm’

20 13.03 N/mm’
=
g 20 mm
Vi
_’ 4_
Sy ] S - R e — 18.37 N/mm’
200 mm
I A
20 15.24 N/mm”
| | Y - 2.04 N/mm” 5.24 N/mm
j¢——150 mm—— ]
(a) (b)
Fig. 21

Solution: Distance of neutral axis (centroid) of the section from top fibre be y, Then

100><20><10+(200—20—20)x20x(20+?)

) +150 % 20 X (200 — 10)
Y= 100 % 20 + 160 x 20 + 150 x 20
=111 mm

I=_1 %100 x 20° + 100 x 20 (111 = 10)

12

+ L %20 x 160° + 160 x 20 (111 — 100)?
12

+ L %150 x 20° + 150 x 20 (111 = 190)
12

i
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= 46505533 mm*
Shear stress at bottom of top flange
F
=—oua
bl
60 x 1000

= —— x 100 x 20 x (111 - 10)
100 x 46505533

y

= 2.61 N/mm?

Shear stress at the same level, but in web
_ 60x1000

20 x 46505533
= 13.03 N/mm?*

x 100 x 20 (111 = 10)

Shear stress at neutral axis:
ay = ay of top flange + ay of web above N-A

111-20

=100 x 20 x (111 — 10) + 20 x (111 - 20) x >

= 284810 mm®.
Shear stress at neutral axis

- - @3)

_ 60x1000

20 x 46505533

= 18.37 N/mm”.
Shear stress at junction of web and lower flange:

Considering the lower side of the section for finding ay, we get

x 284810

ay = 150 x 20 x (190 — 111) = 237000 mm?>
60 x 1000

~ 20 x 46505533

= 15.28 N/mm*

At the above level but in web, shear stress

_ 60x1000
150 x 46505533

q x 237000

x 237000

= 2.04 N/mm?

At extreme fibres shear stress is zero. Hence variation of shear across the depth of the section
is as shown in Fig. 21.

i
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IMPORTANT FORMULAE

1. Bending equation: M === E
1 R

1
2. Modulus of section Z=——.

ymax

3. Moment carrying capacity of section = fper Z.

4. Section modulus of various sections:

3 3
(i) Rectangular: l bd* (ii) Hollow rectangular: lu
6 6 D
T 4 g4
(i) Solid circular section: —d (iv) Hollow circular section: iu
32 32 D

2
(v) Solid triangular section: L
24

F _
5. Shear stress in a beam ¢ = E(ay)

6. In rectangular sections,
Gmax = 1.5 Gy, Aty = d/2

4

In circular sections g, . = 3 Qay > at centre
. . h

In triangular section, ¢, =1.5¢,,aty= 5

31
SEg s
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Tutorial Question
Derive the equation of bending moment and write down the assumptions for theory of simple
bending.
A simply supported beam carries a U.D.L. of intensity 2.5 kN/metre over entire
span of 5 meters. The cross-section of the beam is a T-section having the dimensions
Top ange: 125 mm cm X 25 mm
Web: 175 mm cm X25 mm
Calculate the maximum shear stress for the section of the beam.
A cantilever beam of length 10 m has a cross section of 100 mm X 130 mm has a UDL of 10
KN/m over a length of 8 m from the left support and a concentrated load of 10 KN at the right
end. Find the bending stress in the beam

A beam of T - section is having flange 120mm X 15mm and web 100mm % 15mm. It is
subjected to a shear force of 24kN. Draw shear stress distribution across the depth marking
values at salient points.

An I section is having overall depth as 550mm and overall width as 200mm. The thickness of
the flanges is 25mm where as the thickness of the web is 20mm. If the section carries a shear
force of 45kN, calculate the shear stress values at salient points and draw the sketch showing
variation of shear stress.

“* DEPARTMENT OF MECHANICAL ENGINEERING



Assignment Questions

1. An I section beam 350 x 150 mm as shown in Fig. has a web thickness of 10 mm and a
flange thickness of 20 mm. If the shear force acting on the section is 40kN, find the
maximum shear stress developed in the I section

2. A rectangular beam 300 mm deep is simply supported over a span of 4m. Determine the

"'_‘”""-‘_'—"_L
F( |20 men

¥

N A

.

- {&"‘“‘
4
™ g |20 mm
'.'__. |5’0 mm -*I_
uniformly distributed load per meter which the beam may carry, if the bending stress should
not exceed 120 N/mm?. Take I = 8x10°® mm*.
3. An I-section beam 350mmX200mm has a web thickness of 12.5mm and a flange thickness

of 25mm. It carries a shearing force of 200kN at a section. Sketch the shear stress
distribution across the section.

%0
310 mm

4. A rolled steel joist 200mmx160mm wide has flange 22mm thick and web 12mm thick.
Find the proportion, in which the flanges and web resist shear force.

5. A simply supported beam of 2m span carries a U.D.L. of 140 kN/m over the whole span.
The cross section of the beam is T-section with a flange width of 120mm, web and flange
thickness of 20mm and overall depth of 160mm. Determine the maximum shear stress in
the beam and draw the shear stress distribution for the section.

6. A simply supported symmetric I-section has flanges of size 200 mmX 15 mm and its overall
depth is 520 mm. Thickness of web is 10mm. It is strengthened with a plate of size 250 mm
X 12mm on compression side. Find the moment of resistance of the section if permissible
stress is 160 M Pa. How much uniformly distributed load it can carry if it is used as a
cantilever of span 3.6m.
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UNIT 4
DEFLECTION OF BEAMS




Course Objectives:

e To understand the behavior of beams under complex loading.

Course Outcomes:

e Evaluate the deflections in beams subjected to different loading conditions.



Deflection of Beam

Methods to compute deflections in beam
e Double integration method (without the use of singularity functions)
e Macaulay’s Method (with the use of singularity functions)
e Moment area method
Assumptions in Simple Bending Theory

o Beams are initially straight

e The material is homogenous and isotropic i.e. it has a uniform composition and its mechanical
properties are the same in all directions

e The stress-strain relationship is linear and elastic

e  Young’s Modulus is the same in tension as in compression

e Sections are symmetrical about the plane of bending

e Sections which are plane before bending remain plane after bending

Non-Uniform Bending
e In the case of non-uniform bending of a beam, where bending moment varies from section to section,
there will be shear force at each cross section which will induce shearing stresses
o Also these shearing stresses cause warping (or out-of plane distortion) of the cross section so that
plane cross sections do not remain plane even after bending
Elastic line or Elastic curve

We have to remember that the differential equation of the elastic line is

2
d VY

2 _x
dx

Proof: Consider the following simply supported beam with UDL over its length.

EI

Elastic line

O ~ x
y‘i-\"/’[m

% e

X

X 1
Elastic line

From elementary calculus we know that curvature of a line (at point Q in figure)

d?y

2
- dx where R =radius of curvature

1
R 2 3/2
{1 + (d—y) }
dx
For small deflection, ﬂ ~0
dx

dZ
X

<

2

1
or —~
R

Q

Sy
"
i
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Bending stress of the beam (at point Q)
_ _(Mx)y

o, =
* |
From strain relation we get

1__& and &, = Ix
R E

1_M,
R EI
2
Therefore d_);:%
dx* El
2
or El d—y:Mx
d

XZ

General expression

2

From the equation E/ fo = M we may easily find out the following relations.
d4
El fz—a) Shear force density (Load)
dx
. Eld Y =V, Shear force
ax”
2
. E]d—{ =M_ Bending moment
dx ;
dy
e —=0=slope
dx P

e y= ¢ = Deflection, Displacement
e Flexural rigidity = E/

Double integration method (without the use of singularity functions)

o V= J. —dx
o M= [Vidx
El dzf =M,
i

1
o O=Slope=—|M dx
ope EI'[ .

e 0= Deflection= J Odx

4-step procedure to solve deflection of beam problems by double integration method

Step 1: Write down boundary conditions (Slope boundary conditions and displacement boundary

conditions), analyze the problem to be solved

2
dy:M

2 x

Step 2: Write governing equations for, E/

Step 3: Solve governing equations by integration, results in expression with unknown integration constants

Step 4: Apply boundary conditions (determine integration constants)

o ety Ly
ol e I
o Vol

L s
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Following table gives boundary conditions for different types of support.

Types of support and Boundary Conditions Figure

_’!‘

Clamped or Built in support or Fixed end :
( Point A)

Deflection,(y) =0

Slope,(0) =0

Moment,(M)#0 ie.Afinitevalue

Free end: (Point B)

Deflection,(y)#0 i.e.A finite value
Slope,(6)#0 i.e.A finitevalue
Moment,(M)=0

Roller (Point B) or Pinned Support (Point A) or
Hinged or Simply supported.

Deflection,(y) =0
Slope,(6)#0 i.e.A finite value
Moment,(M) =0

End restrained against rotation but free to Y
deflection

Deflection,(y)# 0 ie.Afinite value
Slope,(6)=0
Shear force,(V)=0

Flexible support
Deflection,(y)# 0 i.e.A finite value q
Slope,(6) #0 i.e.Afinitevalue M=K, d_y
dy X
M t(M)=k — -
oment,(M )=k, 0 o V =Ky

Shear force,(V)=k.y Linear spring

K., «+—— FRotational spring

s
Th 5L,
of ..3,' |
5 b &
o1 g8
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Using double integration method we will find the
deflection and slope of the following loaded beams

one by one.

(i) A Cantilever beam with point load at the free end.

(i1)) A Cantilever beam with UDL (uniformly distributed load)

(iii)) A Cantilever beam with an applied moment at free end.

(iv) A simply supported beam with a point load at its midpoint.

(v) A simply supported beam with a point load NOT at its midpoint.
(vi) A simply supported beam with UDL (Uniformly distributed load)

(vii) A simply supported beam with triangular distributed load (GVL) gradually varied load.

(viil) A simply supported beam with a moment at mid span.

(ix) A simply supported beam with a continuously distributed load the intensity of which at any

. TX
point ‘X’ along the beam is W, =W sSin T

(i) A Cantilever beam with point load at the free end.

We will solve this problem by double integration method. For that at first we have to calculate (Mx).

Consider any section XX at a distance ‘X’ from free end which is left end as shown in figure.

| L
. Mi=-Px
We know that differential equation of elastic line
2
El j—y M, =—P.x

Integrating both side we get
2
(e d—Z - P[xdx

dy

X2
or Bl =L=-P2 A ... (i)
dx 2

Again integrating both side we get
Elfdy= | [ Z 4 AJ

3
or E|y=-F%+Ax+B .............. (ii)

Where A and B is integration constants.

Now apply boundary condition at fixed end which is at a distance x =

at fixed end
at x=L, y=0

Y

at x=1,
dx

JEESEEE DEPARTMENT OF MECHANICAL ENGINEERING

L from free end and we also know that



PL

from equation (i) EIL = - ?+AL +B . (iii)
. PL? )
from equation (i) EI1.(0) = -T +A @iv)
2 3
Solving (iii) & (iv) we get A = %and B=- %

3 2 3
Therefore, y= -PL-!— PL'x —i
6ElI 2ElI 3EI

The slope as well as the deflection would be maximum at free end hence putting x = 0 we get

3
ymax = -——— (Negative sign indicates the deflection is downward)

3El

PL
Sl max = 6 max = ——
(Slope) 2EI

Remember for a cantilever beam with a point load at free end.

P
3|

Downward deflection at free end, 5

PL*

And slope at free end, ( 0) = —
2El

(ii) A Cantilever beam with UDL (uniformly distributed load)

} i |
-—x—-1'x

We will now solve this problem by double integration method, for that at first we have to calculate (Mx).

Consider any section XX at a distance ‘X’ from free end which is left end as shown in figure.
2
X WX
S M =—(wx).==-

We know that differential equation of elastic line

2 2
El d_g __wx
dx 2
Integrating both sides we get
2 2
| gdY . [~ dx
dx 2

3
o BY WX A )
dx 6

Again integrating both side we get
wx®

Elfdy=||-———+A |dx

foy- ][22 a )

4
or Ely= -%+ AX +B.......(ii)

" itegration constants]
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Now apply boundary condition at fixed end which is at a distance x = L. from free end and we also know that
at fixed end.

at x=L, y=0

d
at x=1, —y= 0
dx
-wl® +wl®
from equation (i) we get EIx(0) = +AorA=
o wl
from equation (ii) we get Ely=- 2 +AL+B
4
or B=- &
8

The slope as well as the deflection would be maximum at the free end hence putting x = 0, we get

4
Yinax = —\g—él [Negative sign indicates the deflection is downward]
wL®
slope) =6 =—=
( p )max max- BEI

Remember: For a cantilever beam with UDL over its whole length,

Maximum deflection at free end 5

_wp
6El

(iii) A Cantilever beam of length ‘L’ with an applied moment ‘M’ at free end.

I

Maximum slope, ( 9)

Consider a section XX at a distance X’ from free end, the bending moment at section XX is
My) = -M

We know that differential equation of elastic line

2
or El%: M
X

Integrating both side we get
or Eljﬂ - _IM dx

dx?

dy

or El--=-Mx+A _.(i)
ax

31738
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Again integrating both side we get
Eljdy = _[(M x +A)dx

2
or EIy:—M;(

+Ax + B ..(ii)
Where A and B are integration constants.
applying boundary conditions in equation (i) &(ii)

at x=1L, ﬂ:o gives A =ML
dx

2 2
at x=L,y=0 gives B= ME ez - MY
2 2
2 2
Therefore deflection equationis y = Mx +m—£
2El  El  2EI

Which is the equation of elastic curve.

2E|

M
El

Let us take a funny example: A cantilever beam AB of length ‘I and uniform flexural rigidity EI has a

.. Maximum deflection at free end 5

(It is downward)

.. Maximum slope at free end (9)

bracket BA (attached to its free end. A vertical downward force P is applied to free end C of the bracket.

Find the ratio a/L required in order that the deflection of point A is zero.

| L | B

= a—
P
We may consider this force ‘P’ and a moment (P.a) act on free end A of the cantilever beam.
M=P.a/ | L B
A
P
: . A0 . PL®
Due to point load ‘P’ at free end ‘A’ downward deflection (5 ) = ﬁ
2 2
Due to moment M = P.a at free end ‘A’ upward deflection (5) = Z”E_I = (P2.aE)IL
For zero deflection of free end A
P_L3 _ (P.a)l?
3EI 2El
a 2
or—=—
L 3

L
A
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(iv) A simply supported beam with a point load P at its midpoint.

A simply supported beam AB carries a concentrated load P at its midpoint as shown in the figure.

i

- L -

We want to locate the point of maximum deflection on the elastic curve and find its value.
In the region 0 <x <L/2

Bending moment at any point x (According to the shown co-ordinate system)

-2

and In the region L/2 <x <L

Mx=%(x—L/2)

We know that differential equation of elastic line
El— =—xX (In the region 0 < x < L/2)
X

Integrating both side we get

2
orEl ngZ: ;x dx

Again integrating both side we get
P
El [dy = || =x*+A|d
[dy J(4x R j x
3
or Ely = %+Ax + B (ii)

[Where A and B are integrating constants|

Now applying boundary conditions to equation (i) and (ii)
we get

at x=0, y=0
at x=1L1/2, ﬂ:o
dx

2
A=- PE andB=0
16
3 12
.. Equation of elastic line, y = Pxt PL X
12 16

_PL
48E|

Maximum deflection at mid span (x = L/2) 5

P
16El

niniaiesiaiitestbeslie '~~~ at each end (9)
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(v) A simply supported beam with a point load ‘P’ NOT at its midpoint.

A simply supported beam AB carries a concentrated load P as shown in the figure.

We have to locate the point of maximum deflection on the elastic curve and find the value of this deflection.

Taking co-ordinate axes x and y as shown below

Y

For the bending moment we have

In the region 0<x < a, M, = (?)X
. P.a
And, In the region a<x < L, M, =_T(L X)
So we obtain two differential equation for the elastic curve.
2
EICIy IDax for 0<x < a
dx* L

and EI;jy ?.(L-x) fora<x <L

Successive integration of these equations gives

dy _ Pax

El — . —+A, (i) for o<x<a
dx L 2
BY pax-Paea L (ii) for a<x<L
dx L
3
Ely =%.%+A1X+B1 ...... (ii) for O<x<a
Ely Pa—-P—f%m X +B, ....(IV) fora<x<L

Where A1, Az, B1, Bzare constants of Integration.
Now we have to use Boundary conditions for finding constants:
BCS (a) at x=0,y=0

(b)yatx=L,y=0

(c)atx =a, (%)= Same for equation (i) & (ii)

(d) at x = a, y = same from equation (iii) & (iv)

Pb 2 _p2): P.a/, .
We get A_6L( -b%); A= L(2|_+a)
and B, =0; B, =Pa® / 6El

Therefore we get two equations of elastic curve
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E|y=-%(L2—b2—x2) ..... (vv  for 0<x<a

) %[&)(X'a)g’*('}_bz)x'x3]---(Vi) for a<x<L

For a > b, the maximum deflection will occur in the left portion of the span, to which equation (v) applies.

Ely

Setting the derivative of this expression equal to zero gives

= \/a(a+2b) B \/(L-b)(L+b) C[2-p?
3 3 V3

at that point a horizontal tangent and hence the point of maximum deflection substituting this value of x

_ P.b(Lz - bZ )3/2
™ 943.EIL

into equation (v), we find, y

Case -I:ifa =b = L/2 then

L2 — (L2)?
Maximum deflection will be at x = # =L/2
i.e. at mid point
27312
P.(L2)x [P -(L2)} " ppo
and Y, =(5)= =
9V3EIL 48E|

(vi) A simply supported beam with UDL (Uniformly distributed load)
A simply supported beam AB carries a uniformly distributed load (UDL) of intensity w/unit length over its

whole span L as shown in figure. We want to develop the equation of the elastic curve and find the

maximum deflection & at the middle of the span.

y

Taking co-ordinate axes x and y as shown, we have for the bending moment at any point x

2
M, :W—L.x -wX
2 2

Then the differential equation of deflection becomes

Integrating both sides we get
dy_wk X’ wx ()
x 22 23 A e
Again Integrating both side we get

wL x* w x* .
Ely=—~—-—"—+Ax+B ... (i)
2 6 212
Where A and B are integration constants. To evaluate these constants we have to use boundary conditions.
at x=0,y=0 gives B=0

3
at x=1L/2, ﬂ=0 gives A:—ﬁ
dx 24

Therefore the equation of the elastic curve

wk . ow . wl WX

—.X
oo =l 24El

[Ls —2L.x% + x°]

:l 1= 4
k8¢
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The maximum deflection at the mid-span, we have to put x = L/2 in the equation and obtain

~ 5wl*
384E/

And Maximum slope 0, = 6, at the left end A and at the right end b is same putting x = 0 or x = L Therefore
3
wL

(vii) A simply supported beam with triangular distributed load (GVL) gradually
varied load.
A simply supported beam carries a triangular distributed load (GVL) as shown in figure below. We have to

Maximum deflection at mid-span, (It is downward)

we get Maximum slope (9)

find equation of elastic curve and find maximum deflection (5) .

In this (GVL) condition, we get

dy w .
El —-=lbpad=——x ... i
dx* L ®
Separating variables and integrating we get
d’y wx® .
El —=(V,)=——+A ... ii
dx® ( X) 2L (i)

Again integrating thrice we get

2 3
B - W (i)
dx 6L
4 2
dy WX A s (iv)
dx 24L 2
5 3 2
oW A B ioxsD )
120L 6
Where A, B, C and D are integration constant.
Boundary conditions atx =0, Mx=0, y=0
atx=1, Mi=0,y=0 gives
3
A=W poo o= oy
6 360
WX

Therefore Y = - {7L4 —10L2x% + 3X4} (negative sign indicates downward deflection)

360EIL
dy

To find maximum deflection d , we have d— =0
X

wL*
And it gives x = 0.519 L and maximum deflection (5) =0.00652 E

2

25
of 8¢
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(viii) A simply supported beam with a moment at mid-span
A simply supported beam AB is acted upon by a couple M applied at an intermediate point distance ‘a’ from

the equation of elastic curve and deflection at point where the moment acted.

v

bl

M L
| =
Sl

M

M
Considering equilibrium we get R, =r and Rg = T

Taking co-ordinate axes x and y as shown, we have for bending moment

M
In the region 0<Xx<a, M, = r.X
. M
In the region a<Xx<L, MX=EX'M

So we obtain the difference equation for the elastic curve

for0 <x <a
2
Eld—le.x
dx®* L
2
and Eld—Z:M.x—M fora<x<L
dx* L
Successive integration of these equation gives
dy M x° .
El-——=—"—+A (i forO<x<a
dx L2 U
2
B _M_X men, (ii) fora<x<L
dx L 2
M x®
and Ely = T ;+A1X+B1 ...... (iii) forO<x<a
3
EIy=¥X——M—X+A2x+BZ ...... (v)  fora<x<L
o 2

Where A1, A2, B1 and Bz are integration constants.

To finding these constants boundary conditions
(a) at x=0, y=0
(b) at x=L, y=0

(c) at x=a, (%j= same form equation (i) & (ii)

(d) at x=a, y = same form equation (iii) & (iv)

ML Ma? _&J\na2
2L % 3 2

Ma?
B. =0, B, =
1 2 2
With this value we get the equation of elastic curve
y=-w{6aL-3a2—x2—2L2} for0O<x<a

6L

.. deflection of x = g,

= £{3aL - 227 - 1)

3EIL

g~

ok A
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(ix) A simply supported beam with a continuously distributed load the intensity

of which at any point ‘x’ along the beam is w, = wsin (’z—xj

-
W, = Sin [ ZX )

Ym ‘
) X
Y T L

2 2
At first we have to find out the bending moment at any point ‘x’ according to the shown co-ordinate system.
We know that

d(Vs) =-w sin(%xj

dx

Integrating both sides we get
[d(v,)=-]w sin[”Tx)dx +A

orV, = +W—L.cos(”—xj+A
7 L

and we also know that

d(M
u:Vx :W—Lcos[”XjJrA
dx T

Again integrating both sides we get

[dm)=] {W—Lcos[%x)+ A}dx

T

2
or M, :%sin(”—X)+Ax+B
T L

Where A and B are integration constants, to find out the values of A and B. We have to use boundary

conditions
at x=0, M:=0
and atx=1L, Mi=0

2
From these we get A =B = 0. Therefore M, = ﬁsin(%x)
z

So the differential equation of elastic curve

2 2
g9y _y W sin(”—x)

dx? * x? L

Successive integration gives

E|d_y:_%c s(”—xj+c ....... (i)
dx L
Ely :_WI; sm[”—xj+CX+D ..... (i)
T L

Where C and D are integration constants, to find out C and D we have to use boundary conditions
at x=0, y=0
at x=L, y=0

and that give C=D =0

3
Therefore slope equation El-—==- cos (—)

wl* . (X
and Equation of elastic curve Yy = _4_E|S|n [—)
T

(-ive sign indicates deflection is downward)

. . . e | TX . .
Deflection will be maximum if Sln(Tj is maximum

T gt IO
g S
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Sin(ﬂ%):l or x=1/2

4

and Maximum downward deflection (5) = (downward).

7°El
Macaulay's Method
® When the beam is subjected to point loads (but several loads) this is very convenient method for
determining the deflection of the beam.
® In this method we will write single moment equation in such a way that it becomes continuous for
entire length of the beam in spite of the discontinuity of loading.
® After integrating this equation we will find the integration constants which are valid for entire
length of the beam. This method is known as method of singularity constant.
Procedure to solve the problem by Macaulay’s method

Step — I: Calculate all reactions and moments

Step — II: Write down the moment equation which is valid for all values of x. This must contain brackets.

Step - III: Integrate the moment equation by a typical manner. Integration of (x-a) will be
(x-a)’ x? . A o (xa)’
2 not ?—ax and integration of (x-a)2 will be 3 S0 on.

Step — IV: After first integration write the first integration constant (A) after first terms and after second
time integration write the second integration constant (B) after A.x . Constant A and B are valid for all
values of x.

Step — V: Using Boundary condition find A and B at a point x = p if any term in Macaulay’s method, (x-a) is

negative (-ive) the term will be neglected.

(i) Let us take an example: A simply supported beam AB length 6m with a point load of 30 kN is applied
at a distance 4m from left end A. Determine the equations of the elastic curve between each change of load
point and the maximum deflection of the beam.

¥

30kN
A am | 2m g
e ;!_',' - B X
10kN 20kN

Answer: We solve this problem using Macaulay’s method, for that first writes the general momentum

equation for the last portion of beam BC of the loaded beam.
d?y .
Bl 7 =M, =10x |-30(x-4) N.m 0!
By successive integration of this equation (using Macaulay’s integration rule

e.g j(x—a)dx :@)

We get

+

o0

:1 -'1'2_:
Bt AL
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For the beam and loading shown, determine
} the slope and deflection at point B.

1 L/2 ! L/2 !

Superpose the deformations due to Loading I and Loading II as shown.

Loading 1 Loading 11
A
i (@)
— + | 7 B
i o
|<iL/2~—*|<—L/2*J
1
/| B__16y),
(yp)n
B + —=
Yy
Oy
Loading 1 Loadine I
A w &
3 4
wl wi
‘H Galr=- Bk =
e
d
. Loading 1T
I.\ i i 3 4
e wL wL
=T By =—— vely=——
gLl STy Y T asEr
Euding T In beam segment CB. the bending moment is
A (4] B zero and the elastic curve is a straight line.
W 3
wE
—in——n J 8g) =8 ) =——
i, —T )y " 1 asE
Ll‘ Weln Ayt "
_____ Lot (gl = we! 1‘5,7 A
7 “BI T 128Er T a8EI\2) 384EI
Yeln
Louding 1 Loading IT

L A it

i, - D, 4 s

B
| e
- -!- 12— - L - klli——F—I.ﬂJ
iy Y Y o Pl
l I S | L4 i—/T?’; n
H*\Jl_ |\ﬁ fg A 3
i B
Combine the two solutions.
3 3 I 3]
wL wL TwL|
8p=(8g);+(8g )y =——+ = -
AT AT 2~ 4sE1
sa=sm)e 4 (a)e = wit 7wt v = AL
YR SEI | 384EI "2~ 354E

Dl
%
[
i
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Tutorial Questions

1. A cantilever 3m long has moment of inertia 800 Cm* for 1m length from the free end,
1600 cm* for the next 1m length 2400 Cm* for the last 1m. length. At the free
end a load of 1 KN acts on the cantilever. Determine the slope and deflections at the
free end of the cantilever E=210 GN/ m2
2. A simply supported beam of span 6m carries two point loads of 60KN and S0KN at 1m and
3m respectively from the left end. Find the position and magnitude of max. deflection. Take
E= as 200 GPa and I =8500cm*. Also determine the value of deflection at the same point if
one more load of 60KN is placed over the left support.
3. A beam AB of 8 m span is simply supported at the ends. It carries a point load of
10 kN at a distance of 1 m from the end A and a uniformly distributed load of 5
kN/m for a length of 2 m from the end B. If [ = 10 _ 106 m4, Using Macaulay's
Method, Determine:
(a) Deection at the mid-span,
(b) Maximum deection, and
(c) Slope at the end A.

4. A simply supported beam of span 6m carries two point loads of 60KN and SOKN at Im and 3m
respectively from the left end. Find the position and magnitude of max. deflection. Take E= as
200 GPa and I =8500cm®. Also determine the value of deflection at the same point if one more
load of 60KN is placed over the left support.

5. A simply supported beam of 8m carries a partial u d | of intensity SKN/m and length 2m,
sarting from 2m from the left end. Find slope at left support and central deflection. Take E=
200Gpa and I=8x10*mm*
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Assignment Questions

1. A simply supported beam of 8m carries a partial u d I of intensity SKN/m and length 2m,
sarting from 2m from the left end. Find slope at left support and central deflection. Take E=
200Gpa and I=8x10*mm*

2. A simply supported beam span 14m, carrying concentrated loads of 12KN and 8KN at two
points 3mts and 4.5m from the two ends respectively. Moment of Inertia I for the beam is 160
x10° mm* and E = 210KN/mm?. Calculate deflection of the beam at points under the two loads
by macaulay’s method

3. A Cantilever beam AB 6 mts long is subjected to u.d.l of w KN/m spread over the entire
length. Assume rectangular cross-section with depth equal to twice the breadth. Determine the
minimum dimension of the beam so that the vertical deflection at free end does not exceed 1.5 cm
and the maximum stress due to bending does not exceed 10 KN/cm?*. E=2 X 10’ N/ cm?.

4. A beam section is 10m long and is simply supported at ends. It carries concentrated loads
of I00kN and 60kN at a distance of 2m and 5m respectively from the left end. Calculate the
deflection under the each load find also the maximum deflection. Take I = 18 X 10®mm® and E =
200kN/mn?’.

5. A simply supported beam of span 6m carries two point loads of 60KN and 5S0KN at 1m and
3m respectively from the left end. Find the position and magnitude of max. deflection. Take
E= as 200 GPa and I =8500cm®. Also determine the value of deflection at the same point if

one more load of 60KN is placed over the left support.
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UNIT 5

TORSION OF CIRCULAR
SHAFTS &THIN CYLINDERS




Course Objectives:

e To analyze the cylindrical shells under circumferential and radial loading
Course Outcomes:

e Analyze the thin cylindrical shells.



Unitv

Torsion of Circular Shafts

The product of this turning force and the distance between the point of application of the force and the
axis of the shaft is known as torque, turning moment or twisting moment. And the shaft is said to be
subjected to torsion. Due to this torque, every cross-section of the shaft is subjected to some shear
stress.

Assumptions for Shear Stress in a Circular Shaft Subjected to Torsion

1. The material of the shaft is uniform throughout.
The twist along the shaft is uniform.
Normal cross-sections of the shaft, which were plane and circular before the twist, remain plane
and circular even after the twist.

4. All diameters of the normal cross-section, which were straight before the twist, remain straight
with their magnitude unchanged, after the twist.

Torsional Stresses and Strain

|
| TT—
: I AT
| p— AT
I i |

o|—— % Lo A0 )

| I. e, | I, | |
: '-.'_ :U .'J I"‘- IG
| !___.- o e \\"\_ : = -/l

o= I

Fig. 1

Consider a circular shaft fixed at one end and subjected to a torque at the other end as shown in
Fig.1

T=Torque in N-mm,
| = Length of the shaftin mm and
R = Radius of the circular shaft in mm.

As a result of this torque, every cross-section of the shaft will be subjected to shear stresses. Let the
line CA on the surface of the shaft be deformed to CA’ and OA to OA’ as shown in Fig.1

2ACA' = ¢ in degrees

ZAOA' =0 in radians

Pl
Lg gl
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T = Shear stress induced at the surface and

C = Modulus of rigidity, also known as torsional rigidity of the shaft
material.

We know that shear strain = Deformation per unit length

= —7 =tan ]
= ...(¢ being very small, tan ¢ = )
We also know that the arcAA” = R-0
; _ A _R-0 .
. s Ty wall)
If T is the intensity of shear stress on the outermost layer and C the modulus of rigidity of the
shaft, then
Fi i (ii
R C! ek }‘
From equations (i) and (ii}, we find that
T RS T_C-0
g = 1 C R
If T, be the intensity of shear stress, on any layer at a distance x from the centre of the shaft, then
Ty 1 _iE+8
P B 1 LGETD

Strength of a Solid Shaft

The term, strength of a shaft means the maximum torque or power. it can transmit. As a matter of
fact, we are always interested in calculating the torque, a shaft can withstand or transmit.

Let R = Radius of the shaft in mm and
T = Shear stress developed in the outermost layer of the shaft in
N/mm™

Consider a shaft subjected to a torque T as shown in Fig. 2. Now let us consider an element of
area da of thickness dx at a distance x from the centre of the shaft as shown in Fig. 2.

52 da = 2mx - dx ik )
and shear stress at this section,

Ty = TX i)

::E -
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e

o,

3

iy

an

where T = Maximum shear stress.
Turning force = Shear Stress x Area
= T, -dx

X
Tx—xda
R

X

= 2mx-d
.TRH T -dlx
21'Lr_ 7

o SRRk
RI

We know that turning moment of this element,
dT = Turning force = Distance of element from axis of the shaft

Fig. 2

R T

The total torque, which the shaft can withstand, may be found out by integrating the above
equation between 0 and R i.e.,

M " K
T = J‘Ex!-dx=£ X2 dx
R R
0 ]

4R
2t x

T 3 T 3
2o ="xtxD I
R|4| 2 16 N

where [ is the diameter of the shaft and is equal to 2R.

ExampPLE 1 A solid steel shaft is to transmit a torque of 10 kN-m. If the shearing stress is
not to exceed 45 MPa, find the minimum diameter of the shafi.
Sovrution. Given: Torque (T) = 10 kN-m = 10 x 10° N-mm and maximum shearing stress (1) =45
: 2
MPa = 45 N/mm".
Let D = Minimum diameter of the shaft in mm.
We know that torque transmitted by the shaft (7)),

b, o 3 b9 k
10% 10° = —><*c><£f‘:ﬁ><45><B4 ~8836D°

16
_ 5 10x10° 6
s o = 2836 =1.132x 10
or D = 1.04x10°=104mm  Ans.

L
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_Strength of a Hollow Shaft
It means the maximum torque or power a hollow shaft can transmit from one pulley to another,
Now consider a hollow circular shaft subjected to some torgue.
Let R = Outer radius of the shaft in mm,
r = Inner radius of the shaft in mm. and

T = Maximum shear stress developed in the outer most layer of
the shaft material.

Now consider an elementary ring of thickness dx at a
distance x from the centre as shown in Fig. 3.

We know that area of this ring,
da = 2mx - dx <)

and shear stress at this section.

x
=. TX—
Turning force = Stress x Area

= Ty-dx
T
[ T —T"ﬁ] Fig. 27.3

s tx%xznxdx wd e da = 21 xdx)

= 2.2 iD)

We know that turning moment of this element,
dT'" = Turning force x Distance of element from axis of the shaft

= Exl.dx.xzz_mx3

- - dx ..(iii)

The total torque, which the shaft can transmit, may be found out by integrating the above equation
between rand K.

. 47k 4 4 £ of
-odnmpx | 2| B v | m® D" —d 1
= T{T]r _T[—4 ]_ IEXTK[—D ]N mm
where [} is the external diameter of the shaft and 1s equal to 2R and 24 is the internal diameter of the
shaft and is equal to 2r.

[

o =y
L
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Power Transmitted by a Shaft

We have already discussed that the main purpose of a shatt is to transmit power from one shaft to

another in factories and workshops.
of its ends to another.

Let N

T=

Work done per minute

Work done per second

Power transmitted

Mow consider a rotating shaft, which transmits power from one

No. of revolutions per minute and
Average torque in kN-m.
Force » Distance = T % 2nN = 2rNT
2rNT

60

Work done in kN-m per second

2nNT
il

kN-m

kW

Example 2: A hollow shaft is to transmit 200 kW at 80 r.p.m. If the shear stress is not to
exceed 60 MPa and internal diameter is 0.6 of the external diameter, find the diameters of the

shaft.

SOLUTION. Given : Power (P) =200 kW ; Speed of shaft (N) = 80 r.p.m. ; Maximum
shear stress (t) = 60 MPa = 60 N/mm?2 and internal diameter of the shaft (d) = 0.6D (where D

is the external diameter in mm).

We know that torque transmitted by the shaft,

T

p* T

n D' - 06D
16

D

im{

{5

D
1030 N-mm=103x10° D' kN-m

xﬁﬂx[

We also know that power transmitted by the shafi ( P),

200

D3

or D
and d

i
Pty

_\{: My
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2INT _ 2mx 80 (10.3x 1078 D)
60 60
200
(86.3x107%)

1.32 x !'[}l= 132mm  Ans.
0.6D=06x132=T792mm

3

—863%10°D

=232 % I'EIE’mm3

Ans.
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Polar Moment of Inertia

The moment of inertia of a plane area, with respect to an axis perpendicular to the plane of the
figure, is called polar moment of inertia with respect to the point, where the axis intersects the plane.
In a circular plane, this point 15 always the centre of the circle. We know that

C-0
% = i) .. (from Art. 27.3)
and g % xTx D’ i) ... (from Art. 27.3)
16T
or T = =
Substituting the value of T in equa!icn (1),
16T _ €0
nD’ xR [
T C-8
or i B
i_x D' xR
16 _ :
e e CI‘B _“[Radius. R:%]
T 4
A
T C-8 i
Fil= .—! el IE
T 4 . . .
where I = Tl X | Itis known as polar moment of inertia.
The above equation (i7i) may also h-a written as ;
= _T_C-8 .t _€-8
R 7 ! "R T

pkp
gy
2= X

P =
s Wy E‘
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ExampLe 3. Find the angle of twist per metre length of a hollow shaft of 100 mm
external and 60 mm internal diameter, if the shear stress is not to exceed 35 MPa. Take C = 85
GPa.

SoLumon. Given: Length of the shaft ({) =1 m=1 x 10° mm : External diameter (1)) = 100 mm;
Internal diameter () = 60 mm ; Maximum shear stress (1) = 35 MPa =35 N/mm® and modulus of
rigidity (C) = 85 GPa = 85 x 10° N/mm”.

Let 8 = Angle of twist in the shaft.

We know that torque transmitted by the shaft,

D*-d*
D
5.98 % 10° N-mm
We also know that polar moment of inertia of a hollow circular shaft,

T = EXT}(

16 100

4 4
=£x35x{um1 ~(60) } —

J = 35ID*—d*1=32 (000" — (60)] =855 x 10° mm*

and relation for the angle of twist,

T C-8 5.08x10° (85x10M)8
7 = or —= —85.0
8.55%10 110
5 [
6= XY aaneedl 08 Aaw

(8.55x10%) x 85

L o i L

ExampLE 4. A solid shaft is subjected to a torgue of 1.6 kN-m. Find the necessary

diamieter of the shaft, if the allowable shear stress is 60 MPa. The allowable twist is 17 for every
20 diameters length of the shaft. Take C = 80 GPa.

by
i

o
L
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Sowumon. Given: Torque (T)= 1.6 kN-m=1.6x 10" N-mm; Allowable shear stress (t)=60MPa=
f-ﬂmemz; Angle of twist(8)=1"= % rad ; Length of shaft ({) = 20 D and modulus of ngidity (C)
=80 GPa=80x 10" N/mm".

First of all, let us find out the value of diameter of the shaft for its strength and stiffness,

1. Diameter for strength
We know that torque transmitted by the shaft (T),

P T i_ N 3 3
LE6X10" = JexTXDf =7-x60xDi =11.78 D,
3 1.6x10° _ & 3
DJ = W =0.136x 10" mm
or D, = 0514x10°=51 4mm D)

2. Diameter for stiffness
We know that polar moment of inertia of a solid circular shaft,

J = 25x(Dy* —0008 D!

.

and relation for the diameter,

T _C#® 1.6%10° _ (80x10°) % (1/180)

I =1 % oespi 20D,

6
Dj’. _ (1610 ::rxlﬂ' — 934 % 10° mm’
0.008 = (80x107) = (m/180)

or D, = 6.16x 10' = 61.6 mm i)
We shall provide a shaft of diameter of 61.6 mm (i.e., greater of the two values). Ans.

ExampLE 5. A solid shaft of 200 mm diameter has the same cross-sectional area as a
hollow shaft of the same material with inside diameter of 150 mm. Find the ratio of

{a) powers transmitted by both the shafts at the same angular velocity.

(b) angles of twist in equal lengths of these shafts. when stressed to the same intensity.

Sorumon. Given: Diameter of solid shaft (D,) =200 mm and inside diameter of hollow shaft (d)
= |50 mm.

ta) Ratio of powers transmitted by both the shafts

We know that cross-sectional area of the solid shaft,
I
4
and cross-sectional area of hollow shaft,

A = fo:ExQDD]E:IDmDnmz

i 2 L ¢ 2 y AN, | A
iy 4 _ for | i o] _
A, = X (D™ —d7) #[D™ —(150)7] (D 22 500)
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Since the cross-sectional areas of both the shafts are same. therefore equating A; and A,.

b 2 R v :
Iflﬂ{}j = ZI:.D — 22 50(1)
40 000 = D*—22 500
D' = 40000 + 22 500 = 62 500 mm"
or D = 250 mm

We also know that torque transmitted by the solid shaft,
T

T,[ X -
T, = JeX XD =1gx1x(200] =500x 10’ R TN-mm .00
Similarly, torque transmitted by the hollow shaft,
' 4 4 4 4
T = % XTI D E} d :%x rx[—[zm} 2;{;:159] N-mm
= 85010’ nTN-mm
Power transmitted by hollow shaft
Power transmitted by solid shaft
I _ 50x10° nt 17 A
T, 500x10°mt "
by Ratio af angles of twist in bath the shafts
We know that relation for angle of twist for a shaft,
r_Cco . o4
BT B e
Angle of twist for the solid shaft,
o o D, 200
B, = RC . 100C ,..[whereR=T‘= ) =ll]{]'mm]
Similarly angle of twist for the hollow shaft,
o d D, 250
8, = RC - 125C ,..[when:R—T— 5 =125 mm]
_ .6 T
Angle of twist of hollow shaft _ © _ 125C _ 100 _ T

Angle of twist of solid shaft ~ 8, T = 125
100C
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ExampLE 6. A shaft ABC of 500 mm length and 40 mm external diameter is bored, for a
part of its length AB to a 20 mm diameter and for the rematning length BC 10 a 30 mm diameter

bore as shown in Fig. . If the shear stress is not to exceed 80 MPa, find the maximum power, the
shaft can transmit at a speed of 200 r.p.m.

If the angle of twist in the length of 20 mm diameter bore is equal to that in the 30 mm diameter
bore, find the length of the shaft that has been bored to 20 mm and 30 mm diameter.

= 500 mm =]
s ' T
Wmm—_— 30 40
T ' + |
A B c
I Lag >t Tne ‘l
Fig.

Sorumon. Given: Total length of the shaft (/) = 500 mm; External diameter of the shaft (1)) =40
mm ; Internal diameter of shaft AB (d,;) = 20 mm ; Internal diameter of shaft BC (dp) = 30 mm :
Maximum shear stress (1) = 80 MPa = SD N/mm” and speed of the shaft (N) = 200 rcp.m.

Maximum power the shaft can transmit
We know that torgue transmitted by the shaft AB,

" P 47
T D' —dg| = 40y — (20)
?:m i Exrx[—ﬂ ]_EXSGX —a MN-mm

= 0425 x 10" Nomm (D)

Dt [ (40)* — 30)* |
Ty = %XTK[TM]zﬁme {}T{ N-mm

687.3 % 10° N-mm i)

Similarly,

From the above two values, we see that the safe torque transmitted by the shaft is minimum of the
two, Le., 6873 x 10° N-mm = 687.3 N-m. Therefore maximum power the shaft can transmit,

MNT 2 X7 x 200 % (687.3)
P =0 = = 14304 W

= 1439 kW Ans.
Length of the shaft, that has been bored ta 20 mm diameter
Let I,y = Length of the shaft AB (i.e., 20 mm diameter bore) and
Iy = Length of the shaft BC (i.e., 30 mm diameter bore) equal to (500 -/, ;) mm.
We know that polar moment of inertia for the shaft AB,
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Lip = 5 X(D" ~dyp) =25 X140 - 20" mm*

32
Similarly, Ty = %x{ﬂ*—d}ﬂ:%x[{#}}*—{mﬁ mm”*
We know that relation for the angle of twist:
T _co o T
J T o =g
L T lpe
O = Pl and Opc= Jge-C
Since 8,, =0, - and T as well as C is equal in both these cases, therefore
F,i 1z ‘IB_C & Lan - lnc
7 = T 4 £, . T ——"
AB | BC ﬁx[[ﬁ}} (2007] Ex{{aﬂ-ﬂ) (3071
: 40" — 20/ _ 2400000
ar !ﬁ = { ::'4 ( )__1 = f?sm =I3T
lpe (4007 — (30}
lig = V371,
I‘B?IEE_'_FEL_ = 5{]] u-t b L‘B‘I‘E’B‘:‘:jm}
00
Iy = 337 =211lmm  Ans.
and lyg = 500-211=289mm  Ans.
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Thin Cylinders

In general, if the thickness of the wall of a shell is less than 1/10th to 1/15th of its diameter, it
is known as a thin shell.

Stresses in a Thin Cylindrical Shell

The walls of the cylindrical shell will be subjected to the following two types of tensile
stresses:

1. Circumferential stress
2. Longitudinal stress.

Circumferential Stress

(a) (£)
Fig.

Consider a thin cylindrical shell subjected to an internal pressure as shown in Fig.(a) and (b).
We know that as a result of the internal pressure, the cylinder has a tendency to split up into
two troughs as shown in the figure.

Let 1= Length of the shell

d = Diameter of the shell,

75{. e
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f Thickness of the shell and
P Intensity of internal pressure.
Total pressure along the diameter (say X-X axis) of the shell,

P = Intensity of internal pressure x Area=p X d x|
and circumferential stress in the shell,
~ Total pressure _ pdl _ pd

i = = ...t of two sections
: Resisting section 20 U { }

This is a tensile stress across the X-X. It is also known as hoop siress.
Mot If 1 is the efficiency of the riveted joints of the shell, then stress,

pd

S = 2m

Longitudinal Stress

Consider the same cylindrical shell, subjected to the same internal pressure as shown in Fig.
(a) and (b). We know that as a result of the internal pressure, the cylinder also has a tendency
to split into two pieces as shown in the figure.

Let p = Intensity of internal pressure,
1 = Length of the shell,
d = Diameter of the shell and

t = Thickness of the shell.

b
Pty
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| |

(a) (b)
Fig. . Longitudinal stress.
Total pressure along its length (say ¥} axis) of the shell

P = Intensity of internal pressure X Area

r | P

= px—(d)y

PR 1d)

and longitudinal stress in the shell,
T 2

__Total pressure _ Py (@) _pd
® = Resisting section Tt 4

This is also a tensile stress across the section Y-¥. It may be noted that the longitudinal stress is
half of the circumferential or hoop stress.
Note. If 1 is the efficiency of the riveted joints of the shell, then the stress,

pd
Glz-'l!_n

[

o =y
L
“ DEPARTMENT OF MECHEMICAL ENGIMNEERIRG

N



ExamMPLE 1. A stream boiler of 800 mm diameter is made up of 10 mm thick plates. If the
boiler is subjected to an internal pressure of 2.5 MPa, find the circumferential and longitudinal
stresses induced in the boiler plates.

SoLuTioN. Given : Diameter of boiler (d) = 800 mm : Thickness of plates (f) = 10 mm and
internal pressure (p) = 2.5 MPa = 2.5 N/mm".

Circumferential stress induced in the boiler plates
We know that circumferential stress induced in the boiler plates,

_ pd _2.5%800 _ 2_ 100
O, = 5 %10 = 100 N/mm~ = 100 MPa Ans,

Longitudinal stress induced in the boiler plates

We also know that longitudinal stress induced in the boiler plates,

_ pd _2.5%800 _ . |
& = &= Axi0 =50 N/mm~ = 50 MPa Ans.

EXAMPLE 2. A cvlindrical shell of 1.3 m diameter is made up of 18 mm thick plates. Find the
circumferential and longitudinal stress in the plates, if the boiler is subjected to an internal
pressure of 2.4 MPa. Take efficiency of the joinis as 70%.

SoLuTioN. Given: Diameter of shell (d) = 1.31 m=13x 10" mm . Thickness of plates () = 18
mm; Internal pressure (p) = 2.4 MPa = 2.4 N/mm’ and efficiency (1) = 70% = 0.7.

Circumferential stress
We know that circumferential stress,

P _24XQA3x10Y g s
O = 2m~  2x18x07 = = e

Longitudinal stress
We also know that longitudinal stress.

pd  24x(1.3x10%

2 /
G = 4”]_ A% 18% 0.7 =62 N/mm™ = 62 MPa Ans,

EXAMPLE 3. A gas cylinder of internal diameter 40 mm is 5 mm thick. If the tensile
stress in the material is not to exceed 30 MPa, find the maximum pressure which can be allowed
in the cylinder.

SorumioN. Given: Diameter of cylinder (o) = 40 mm ; Thickness of plates (f) = 5 mm and tensile
stress (o) = 30 MPa = 30 N/mm".

Let p = Maximum pressure which can be allowed in the cylinder.
We know that circumferential stress (g,).

_ pd_px40 _
W= = RS
30 )

p = — =15Nmm =7.5 MPa Ans.

4
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Change in Dimensions of a Thin Cylindrical Shell due to an Internal Pressure

Thin cylindrical shell subjected to an internal pressure, its walls will also be subjected to lateral
strain. The effect of the lateral strains is to cause some change in the dimensions (i.e., length
and diameter) of the shell. Now consider a thin cylindrical shell subjected to an internal
pressure.

Let 1 = Length of the shell,

d = Diameter of the shell,

Lg gl
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t = Thickness of the shell and p = Intensity of the internal pressure.

We know that the circumferential stress,

m

G. = 5

d

and longitudinal stress, g, = %
Now let dd = Change in diameter of the shell,

6/ = Change in the length of the shell and
2, = Poisson’s ratio.
m
Now changes in diameter and length may be found out from the above equations, as usual (i.e.,

by multiplying the strain and the corresponding linear dimension).

5d = ¢ -d= Pd(i—L]m:P‘flfl L]

“xEl 2m 2E\ 2m
P_ﬂ'fl_L]x;:ﬂ(i_L]
and & =g d=5m7" m AE\2 m

ExampLE 4. A cylindrical thin drum 800 mm in diameter and 4 m long is made of 10 mm
thick plates. If the drum is subjected fo an internal pressure of 2.5 MPa, determine its changes in
diameter and length. Take E as 200 GPa and Poisson’s ratio as 0.25.

SoLuTioN. Given: Diameter of drum (d) = 800 mm ; Length of drum ({) =4 m = 4 x I{}'1 mim :

Thickness of plates (f) = 10 mm ; Internal pressure (p) = 2.5 MPa = 2.5 N/mm™ : Modulus of

I
elasticity (£) = 200 GPa = 200 x 10" N/mm” and poisson’s ratio {E) =(0.25.
Change in diameter
We know that change in diameter,

pd‘[ I ] 2.5 % (800)° ( 0.25]
bd = l—-—|= Jr= mm
2 2m) 2x10%200x10%H)\ 2

el

= 0.35 mm Ans.
Change in length
We also know that change in length,

251 mim
A

Lﬁ(l_L]_2.5><300x(4xlﬂ3j(1_0
L= 2E\2" m) 2x10x200x10% L2

0.5 mm Ans.

Change in Volume of a Thin Cylindrical Shell due to an Internal Pressure

A little consideration will show that increase in the length and diameter of the shell will also
increase its volume. Now consider a thin cylindrical shell subjected to an internal
pressure.

Let 1= Original length

d = Original diameter,

i
Pty
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0l = Change in length due to pressure and

d0d = Change in diameter due to pressure.

We know that original volume,

n 2 ¥l 2 \ T 2
= —xd xl=|=(d+8d)y x(Ixdl)|—=xd xI
L [4( ) }w 4

m 2
= 4@ ol + 2dl - dd) ...(Neglecting small quantities)
- T (d? .81+ 2dl - 8d)
oV 4 _ 8l 284
v = B, 2 T a —atae
—xd =l
4
or 0V = Vig+2&)
where g, = Circumferential strain and

g, = Longitudinal strain.

EXAMPLE 5. A cylindrical vessel 2 m long and 500 mm in diameter with 10 mm thick
plates is subjected to an internal pressure of 3 MPa. Calculate the change in volume of the vessel.
Take E = 200 GPa and Poisson's ratio = 0.3 for the vessel material.

SoLuTioN. Given: Length of vessel ({)=2m=2x I':]I3 mm ; Diamelerqﬂf vessel (d) = 500 mm

: Thickness of plates (1) = 10 mm : Internal pressure (p) = 3 MPa = 3 N/mm™ ; Modulus of elasticity

3 1
(E) =200 GPa=200x 10° N/mm” and poisson’s ratio [E] =0.3.

We know that circumferential strain.

pa'('l_ 1]= 3500 [I—E]— R _

= uE\ 2m) 2x10x@00xI10). 2 SO
pd ( 3% 500

and logitudinal strain, €, = %{%—#} zx1o><>:zoﬂ><m-‘;(%_0'3] =0.075 x 107 _..(ii)

We also know that original volume of the vessel,

% %m’f 1 =§¢5mf x (2x10°) =392.7 % 10° mm®

Change in volume,
8V = V(e +26)=392.7 x 10° [0.32 x 10~ + (2 x 0,075 x 107)] mm’
= 185 10" mm’ Ans,

pkp
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Tutorial Questions

1. Derive an expression for the shear stress produced in a circular shaft which is
subjected to torsion. What are the assumptions made in the above derivation ?

2. a)Derive the formula for the hoop stress in a thin cylindrical shell subjected to
an internal pressure.

b) A gas cylinder of thickness 25 mm and has an internal diameter of 1500 mm.
The tensile stress in the gas cylinder material is not to exceed 100 N/mm2.
Calculate the allowable internal pressure of the gas inside the cylinder.

3. A thin cylindrical shell is 3m long and 1m in internal diameter. It is subjected to internal
pressure of 1.2 MPa. If the thickness of the sheet is 12mm, find the circumferential stress,
longitudinal stress, changes in diameter, length and volume. Take E=200 GPa and p= 0.3.

4. A Hollow shaft is to transmit 400 KW power at 120 rpm. If the shear stress is not exceed 60
N/mm?® and internal diameter is 0.65 of external diameter. Find the internal and external
diameters assuming maximum torque is 1.5 times the mean

5. A hollow shaft of diameter ratio 3/8 is to transmit 395 kW at 120 rpm. The maximum torque
being 24% greater than the mean, the shear stress is not to exceed 65 MPa and the twist in a
length of 6 m is not to exceed 3 degrees. Calculate its external and internal diameters which

4
would satisfy both the above said conditions. Take G=9.2x10 MPa.
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Assignment Questions

1. A cylindrical vessel 2m long and 500mm in diameter with 10mm thick plates is subjected to
an internal pressure of 3MPa.Calculate the change in volume of the vessel .Take E=200GPa
and poissons ratio=0.3 for the vessel material.

2. A shaft is to be transmitted 100KW at 240 rpm. If the allowable shear stresses of the material
is 60MPa. The shaft is not to twist more than 1° in a length of 3.5 mts. Find the diameter of
the shaft based on strength and stiffness criteria. The modulus of rigidity of the material (N)
is 80 X 10°N/mm’.

3. A cylindrical vessel 3m long and 500mm in diameter with 10mm thick plates is subjected to
an internal pressure of 3MPa.Calculate the change in volume of the vessel .Take E=210GPa
and Poisson’s ratio=0.3 for the vessel material

4. A thin cylindrical shell is 3m long and 1m in internal diameter. It is subjected to internal
pressure of 1.2 MPa. If the thickness of the sheet is 12mm, find the circumferential stress,
longitudinal stress, changes in diameter, length and volume. Take E=200 GPa and p= 0.3.

5. A thin cylindrical shell is 3m long and 1m in internal diameter. It is subjected to internal
pressure of 1.2 MPa. If the thickness of the sheet is 12mm, find the circumferential stress,
longitudinal stress, changes in diameter, length and volume. Take E=200 GPa and p=0.3.

6. A hallow shaft of outside diameter 80 mm and inside diameter 50 mm is made of aluminium
having shear modulus G = 27GPa. When the shaft is subjected to a torque T = 4.8 kN-m,
what is the maximum shear strain and maximum normal strain in the bar?
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